OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13104–13121

A self-normalized, full time-resolved method for fluorescence diffuse optical tomography

Feng Gao, Huijuan Zhao, Limin Zhang, Yukari Tanikawa, Andhi Marjono, and Yukio Yamada  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13104-13121 (2008)
http://dx.doi.org/10.1364/OE.16.013104


View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A full time-resolved scheme that has been previously applied in diffuse optical tomography is extended to time-domain fluorescence diffuse optical tomography regime, based on a finite-element-finite-time-difference photon diffusion modeling and a Newton-Raphson inversion framework. The merits of using full time-resolved data are twofold: it helps evaluate the intrinsic performance of time-domain mode for improvement of image quality and set up a valuable reference to the assessment of computationally efficient featured-data-based algorithms, and provides a self-normalized implementation to preclude the necessity of the scaling-factor calibration and spectroscopic-feature assessments of the system as well as to overcome the adversity of system instability. We validate the proposed methodology using simulated data, and evaluate its performances of simultaneous recovery of the fluorescent yield and lifetime as well as its superiority to the featured-data one in the fidelity of image reconstruction.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 1, 2008
Revised Manuscript: August 5, 2008
Manuscript Accepted: August 6, 2008
Published: August 12, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Feng Gao, Huijuan Zhao, Limin Zhang, Yukari Tanikawa, Andhi Marjono, and Yukio Yamada, "A self-normalized, full time-resolved method for fluorescence diffuse optical tomography," Opt. Express 16, 13104-13121 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002). [CrossRef] [PubMed]
  2. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas DA, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  4. V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005) [CrossRef]
  5. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004). [CrossRef] [PubMed]
  6. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847. [CrossRef] [PubMed]
  7. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time-resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 14, 12255-12270 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12255. [CrossRef] [PubMed]
  8. S. Lam, F. Lesage, and X. Intes X, "Time-domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2263. [CrossRef] [PubMed]
  9. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109. [CrossRef] [PubMed]
  10. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  11. A. D. Klose, V. Ntziachristos, and A. D. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005). [CrossRef]
  12. J. Lee and E. M. Sevick-Muraca, "Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths," J. Opt. Soc. Am. A 19, 759-771 (2002). [CrossRef]
  13. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005). [CrossRef] [PubMed]
  14. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, "Fluorescence lifetime imaging by using time-gated data," Appl. Opt. 46, 7384-7391 (2007). [CrossRef] [PubMed]
  15. S. V. Patwardhan and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008). [CrossRef] [PubMed]
  16. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media," Rev. Sci. Instrum. 79, 013103 (2008). [CrossRef] [PubMed]
  17. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  18. T. J. Farrell and M. S. Patterson, "Diffusion modeling of fluorescence in tissue," in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003). [CrossRef]
  19. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999). [CrossRef]
  20. W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York 1979).
  21. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  22. S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000). [CrossRef] [PubMed]
  23. K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002). [CrossRef]
  24. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods, Vol. 1 5th ed., (Elsevier Pte Ltd., Singapore 2004).
  25. H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging," J. Biomed. Opt.  12, 062107 (2007). [CrossRef] [PubMed]
  26. W. Becker, Advanced time-correlated single photon counting techniques (Springer-Verlag, Berlin 2005). [CrossRef]
  27. D. A. Boas, T. Gaudette, and S. R. Arridge, "Simultaneous imaging and optode calibration with diffuse optical tomography," Opt. Express 8, 253-270 (2001). [CrossRef]
  28. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, "Source-detector calibration in three-dimensional Baysian optical diffusion tomography," J. Opt. Soc. Am. A 19, 1983-1993 (2002). [CrossRef]
  29. T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. 44, 1879-1888 (2005). [CrossRef] [PubMed]
  30. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  31. H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005). [CrossRef]
  32. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000). [CrossRef]
  33. F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, "Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes," Opt. Quantum Electron. 37, 1287-1304 (2005). [CrossRef]
  34. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005). [CrossRef] [PubMed]
  35. F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000). [CrossRef]
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited