OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13122–13132

Gain and noise characteristics of high-bit-rate silicon parametric amplifiers

Xinzhu Sang and Ozdal Boyraz  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 13122-13132 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a numerical investigation on parametric amplification of high-bit-rate signals and related noise figure inside silicon waveguides in the presence of two-photon absorption (TPA), TPA-induced free-carrier absorption, free-carrier-induced dispersion and linear loss. Different pump parameters are considered to achieve net gain and low noise figure. We show that the net gain can only be achieved in the anomalous dispersion regime at the high-repetition-rate, if short pulses are used. An evaluation of noise properties of parametric amplification in silicon waveguides is presented. By choosing pulsed pump in suitably designed silicon waveguides, parametric amplification can be a chip-scale solution in the high-speed optical communication and optical signal processing systems.

© 2008 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.4320) Optical devices : Nonlinear optical devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.4480) Optoelectronics : Optical amplifiers

ToC Category:

Original Manuscript: May 12, 2008
Revised Manuscript: June 24, 2008
Manuscript Accepted: June 30, 2008
Published: August 12, 2008

Xinzhu Sang and Ozdal Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Express 16, 13122-13132 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, "The optical age of silicon," Nature 427, 595-596(2004). [CrossRef] [PubMed]
  2. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15, 5976-5990 (2007). [CrossRef] [PubMed]
  3. O. Boyraz and B. Jalali. "Demonstration of 11 dB fiber-to-fiber gain in a silicon waveguides," Electron. Express 1, 429-434(2004). [CrossRef]
  4. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightwave Technol. 24, 1440-1445 (2006). [CrossRef]
  5. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  6. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous Raman silicon laser," Nature 433, 725-728(2005). [CrossRef] [PubMed]
  7. X. Sang, E.-K. Tien, N.S. Yuksek, F. Qian, Q. Sang and O. Boyraz, "Dual-Wavelength Mode-Locked Fiber Laser with an Intracavity Silicon Waveguide," IEEE Photon. Technol. Lett. 20, 1184-1186 (2008). [CrossRef]
  8. A. Liu, Jones, L. Liu, L. Liao et al, "A high speed silicon optical modulator based on a metal-oxidesemiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  9. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  10. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007). [CrossRef] [PubMed]
  11. K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006). [CrossRef] [PubMed]
  12. Y. -H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006). [CrossRef] [PubMed]
  13. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). [CrossRef] [PubMed]
  14. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  15. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson et al, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867-2869(2005). [CrossRef] [PubMed]
  16. E. -K. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007). [CrossRef] [PubMed]
  17. E. Tien, F. Qian, N. S. Yuksek and O. Boyraz, "Influence of nonlinear loss competition on pulse compression and nonlinear optics in silicon," Appl. Phys. Lett.  91, (2007). [CrossRef]
  18. R. Salem, M. A. Foster, and A. C. Turner et al, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008). [CrossRef]
  19. O. Boyraz, "Nanoscale signal regeneration," Nat. Photonics 2, 12-13 (2008). [CrossRef]
  20. M. E. Marhic, K. K.-Y. Wong and L. G. Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron 10, 1133-1141 (2004). [CrossRef]
  21. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P.-O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002). [CrossRef]
  22. T. Torounidis and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol.Lett. 19, 650-652 (2007). [CrossRef]
  23. T. Torounidis, P. Andrekson and B.-E. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett. 18, 1194-1196 (2007). [CrossRef]
  24. M.-C. Ho, M. E. Marhic, Y. Akasaka and L. G. Kazovsky, "200-nm bandwidth fiber optical amplifier combing parametric and Raman gain," J. Lightwave Technol. 19, 977-981 (2001). [CrossRef]
  25. K. K. Y. Wong, M. E. Marhic, G. Kalogerakis and L. G. Kazovsky, "Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain," in Conf. Lasers and Electro-opitcs 2003, Baltimore, MD, Postdeadline paper CThPDB6.
  26. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. -i. Takahashi, and S. -i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  27. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006). [CrossRef] [PubMed]
  28. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef] [PubMed]
  29. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). [CrossRef] [PubMed]
  30. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005). [CrossRef]
  31. M. Forst, J. Niehusmann, T. Plotzing and J. Bolten et al, "High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007). [CrossRef] [PubMed]
  32. R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall siliconon- insulator wire waveguides," Opt. Express 12, 3713-3718 (2004). [CrossRef] [PubMed]
  33. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987). [CrossRef]
  34. H. A. Haus, Electromagnetic Noise and Optical Measurements (Springer-Verlag, 2000) pp. 197-237.
  35. D. Dimitropoulos, D. R. Solli, R. Claps, O. Boyraz and B. Jalali, "Noise figure of silicon Raman amplifiers," J. Lightwave Technol. 26, 847-852 (2008). [CrossRef]
  36. H.A. Haus, "Linearity of optical amplifiers and the Tomonaga approximation," J. Opt. Soc. Am. B 18, 1777- 1779(2001). [CrossRef]
  37. H. A. Haus and J. A. Mullen, "Quantum noise in linear amplifiers," Phys. Rev 128, 2407-2413 (1962). [CrossRef]
  38. P. Kylemark, P. O. hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, "Noise characteristics of fiber optical parametric amplifiers," J. Lightwave Technol. 22, 409-416 (2004). [CrossRef]
  39. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989). [CrossRef]
  40. M. E. Marhic, G. K. Kalogerakis, K. K. Wong, and L. G. Kazovsky, "Pump-to-signal transfer of lowfrequency intensity modulation in fiber optical parametric amplifier," J. Lightwave Technol. 23, 1049-1056 (2005). [CrossRef]
  41. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, (2005). [CrossRef]
  42. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005). [CrossRef] [PubMed]
  43. Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett. 90, (2007).
  44. Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006). [CrossRef] [PubMed]
  45. G. Kalogerakis, K. Shimizu, M. E. Marchic, K. K.-Y. Wong, K. Uesaka, and L. G. Kazovsky, "Highrepetition- rate pulsed-pump fiber OPA for amplification of communication signals," J. Lightwave Technol. 24, 3021-3027 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited