OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13139–13149

Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry

Eric D. Moore and Robert R. McLeod  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13139-13149 (2008)
http://dx.doi.org/10.1364/OE.16.013139


View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The frequency-sampling method is widely used to accommodate nonlinear laser tuning in swept-wavelength interferometric techniques such as optical frequency domain reflectometry (OFDR) and swept-wavelength optical coherence tomography (OCT). In this paper we analyze the frequency-sampling method and identify two sources of sampling errors. One source of error is the limit of an underlying approximation for long interferometer path mismatches and fast laser tuning rates. A second source of error is transmission delays in data acquisition hardware. We show that the measurement system can be configured such that the two error sources cancel to second order. We present experimental verification of sampling error correction using a general swept-wavelength interferometer with a significantly nonlinear laser sweep.

© 2008 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 27, 2008
Revised Manuscript: August 4, 2008
Manuscript Accepted: August 5, 2008
Published: August 12, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Eric D. Moore and Robert R. McLeod, "Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry," Opt. Express 16, 13139-13149 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hymans and J. Lait, "Analysis of a frequency-modulated continuous-wave ranging system," Proc. IEEE 107, 365-372 (1960).
  2. E. C. Burrows and K.-Y. Liou, "High resolution laser LIDAR utilising two-section distributed feedback semiconductor laser as a coherent source," Electron. Lett. 26, 577-579 (1990). [CrossRef]
  3. W. Eickhoff and R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981). [CrossRef]
  4. S. A. Kingsley and D. E. N. Davies, "OFDR diagnostics for fibre and integrated-optic systems," Electron. Lett. 21, 434-435 (1985). [CrossRef]
  5. D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. LT-3, 971-977 (1985). [CrossRef]
  6. U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides," J. Lightwave Technol. 11, 1377-1384 (1993). [CrossRef]
  7. J. P. von derWeid, R. Passy, G. Mussi, and N. Gisin, "On the characterization of optical fiber network components with optical frequency domain reflectometry," J. Lightwave Technol. 15, 1131-1141 (1997). [CrossRef]
  8. L.-T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, and K.-I. Hayashi, "Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry," Opt. Lett. 18, 1095-1097 (1993). [CrossRef] [PubMed]
  9. R. Passy, N. Gisin, and J. P. von der Weid, "High-sensitivity-coherent optical frequency-domain reflectometry for characterization of fiber-optic network components," IEEE Photon. Technol. Lett. 7, 667-669 (1995). [CrossRef]
  10. M. Froggatt, T. Erdogan, J. Moore, and S. Shenk, "Optical frequency domain characterization (OFDC) of dispersion in optical fiber Bragg gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series, pp. 176-178 (Optical Society of America, 1999).
  11. M. Yoshida, K. Nakamura, and H. Ito, "A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser," IEEE Photon. Technol. Lett. 13, 227-229 (2001). [CrossRef]
  12. T.-J. Ahn, Y. Jung, K. Oh, and D. Y. Kim, "Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber," Opt. Express 13, 10,040-10,047 (2005). [CrossRef]
  13. M. Froggatt, "Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber," Appl. Opt. 35, 5162-5164 (1996). [CrossRef] [PubMed]
  14. H. Rosenfeldt, C. Knothe, J. Cierullies, and E. Brinkmeyer, "Evolution of amplitude and dispersion spectra during fiber Bragg grating fabrication," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001).
  15. O. H. Waagaard, "Spatial characterization of strong fiber Bragg gratings using thermal chirp and opticalfrequency-domain reflectometry," J. Lightwave Technol. 23, 909-914 (2005). [CrossRef]
  16. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, "Local birefringence measurements in singlemode fibers with coherent optical frequency-domain reflectometry," IEEE Photon. Technol. Lett. 10, 1458-1460 (1998). [CrossRef]
  17. M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, "Novel PMD measurement method based on OFDR using a frequency-shifted feedback fiber laser," Opt. Express 9, 207-211 (2001). [CrossRef] [PubMed]
  18. M. Wegmuller, M. Legre, and N. Gisin, "Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry," J. Lightwave Technol. 20, 800-807 (2002). [CrossRef]
  19. M. Froggatt and J. Moore, "High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh backscatter," Appl. Opt. 37, 1735-1740 (1998). [CrossRef]
  20. M. Froggatt, B. Soller, D. Gifford, and M. Wolfe, "Correlation and keying of Rayleigh scatter for loss and temperature sensing in parallel optical networks," in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2004). Paper PDP17.
  21. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, "Distributed fiber-optic temperature sensing using Rayleigh backscatter," in European Conference on Optical Communication, vol. 3 of ECOC 2005 Proceedings (2005). Paper We4.P.005.
  22. B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, "Measurement of localized heating in fiber optic components with millimeter spatial resolution," in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006). Paper OFN3.
  23. M. Froggatt, D. Gifford, S. Kreger, M. Wolfe, and B. Soller, "Distributed strain and temperature discrimination in unaltered polarization maintaining fiber," in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006). Paper ThC5.
  24. G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, "Single-scan interferometric component analyzer," IEEE Photon. Technol. Lett. 15, 263-265 (2003). [CrossRef]
  25. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Express 13, 666-674 (2005). [CrossRef] [PubMed]
  26. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, "Optical vector network analyzer for single-scan measurments of loss, group delay, and polarization mode dispersion," Appl. Opt. 44, 7282-7286 (2005). [CrossRef] [PubMed]
  27. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  28. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  29. K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, "Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation," Electron. Lett. 33, 408-410 (1997). [CrossRef]
  30. K. Iiyama, L.-T. Wang, and K. ichi Hayashi, "Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry," J. Lightwave Technol. 14, 173-178 (1996). [CrossRef]
  31. K.-Y. Huang and G. M. Carter, "Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser," IEEE Photon. Technol. Lett. 6, 1466-1468 (1994). [CrossRef]
  32. M. Kobayashi, K. Takada, and J. Noda, "Optical-frequency encoder using polarization-maintaining fiber," J. Lightwave Technol. 8, 1697-1702 (1990). [CrossRef]
  33. K. Takada, "High-resolution OFDR with incorporated fiber-optic frequency encoder," 4, 1069-1072 (1992).
  34. T.-J. Ahn and D. Y. Kim, "Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation," Appl. Opt. 46, 2394-2400 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited