OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13158–13167

Loss determination in microsphere resonators by phase-shift cavity ring-down measurements

J. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H.-P. Loock, Z. Tian, M.W.B. Wilson, S. Yam, and O. Yastrubshak  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 13158-13167 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical loss of whispering gallery modes of resonantly excited microresonator spheres is determined by optical lifetime measurements. The phase-shift cavity ring-down technique is used to extract ring-down times and optical loss from the difference in amplitude modulation phase between the light entering the microresonator and light scattered from the microresonator. In addition, the phase lag of the light exiting the waveguide, which was used to couple light into the resonator, was measured. The intensity and phase measurements were fully described by a model that assumed interference of the cavity modes with the light propagating in the waveguide.

© 2008 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

Original Manuscript: April 30, 2008
Revised Manuscript: August 8, 2008
Manuscript Accepted: August 11, 2008
Published: August 13, 2008

J. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H.-P. Loock, Z. Tian, M.W.B. Wilson, S. Yam, and O. Yastrubshak, "Loss determination in microsphere resonators by phase-shift cavity ring-down measurements," Opt. Express 16, 13158-13167 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118 (2005). [CrossRef]
  2. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742 (2001). [CrossRef]
  3. C. Chao and L. J. Guo, "Polymer microring resonators fabricated by nanoimprint technique," J. Vac. Sci. Technol. B 20, 2862 (2002). [CrossRef]
  4. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett. 27, 1504 (2002). [CrossRef]
  5. T. Ling and L. J. Guo, "A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity," Opt. Express 15, 17424 (2007). [CrossRef] [PubMed]
  6. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247 (1998). [CrossRef]
  7. I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319 (2008). [CrossRef]
  8. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Opt. Lett. 29, 1224 (2004). [CrossRef] [PubMed]
  9. S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, "Microsphere whispering-gallery-mode laser using HgTe quantum dots," Appl. Phys. Lett. 85, 6101 (2004). [CrossRef]
  10. M. Cai, G. Hunziker, and K. Vahala, "Fiber-Optic Add-Drop Device Based on a Silica Microsphere Whispering Gallery Mode System," IEEE Photon. Technol. Lett 11, 686 (1999). [CrossRef]
  11. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272 (2003). [CrossRef] [PubMed]
  12. G. Farca, S. I. Shopova, and A. T. Rosenberger, "Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes," Opt. Express 15, 17443 (2007). [CrossRef] [PubMed]
  13. A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896 (2006). [CrossRef] [PubMed]
  14. A. T. Rosenberger, "Analysis of whispering-gallery microcavity-enhanced chemical absorption sensors," Opt. Express 15, 12959 (2007). [CrossRef] [PubMed]
  15. K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003). [CrossRef] [PubMed]
  16. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565 (2000). [CrossRef]
  17. A. C. R. Pipino, "Ultrasensitive surface spectroscopy with a miniature optical resonator," Phys. Rev. Lett. 83, 3093 (1999). [CrossRef]
  18. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, "Fiber-loop ring-down spectroscopy," J. Chem. Phys. 117, 10444 (2002). [CrossRef]
  19. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 42, 925 (2003). [CrossRef]
  20. R. Engeln, G. von Helden, G. Berden, and G. Meijer, "Phase shift cavity ring down absorption spectroscopy," Chem. Phys. Lett. 262, 105 (1996). [CrossRef]
  21. Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, "Phase-Shift Fiber-Loop Ring-Down Spectroscopy," Anal. Chem. 76, 6594 (2004). [CrossRef] [PubMed]
  22. M. C. Chan and S. H. Yeung, "High-resolution cavity enhanced absorption spectroscopy using phase-sensitive detection," Chem. Phys. Lett. 373, 100 (2003). [CrossRef]
  23. J. Rezac, "Properties and applications of whispering-gallery mode resonances in fused silica microspheres," Ph.D. (Oklahoma State University, 2002).
  24. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity," Rev Sci Instrum 68, 2978 (1997). [CrossRef]
  25. T. J. Kippenberg, "Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities," Ph.D. (California Institute of Technology, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited