OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13175–13187

Meshed index profile method for photonic crystal fibers with arbitrary structures

Kwang No Park and Kyung Shik Lee  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 13175-13187 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A meshed index profile method, which is based on the localized function method, is demonstrated for analyzing modal characteristics of photonic crystal fibers with arbitrary air-hole structures. The index profile of PCF, which is expressed as a sum of meshed unit matrix, is substituted to full wave equation. By solving this full wave equation, we obtain the modal characteristics of the PCF such as the mode field distribution, the birefringence and the waveguide dispersion. The accuracy of the proposed meshed index profile method (MIPM) is demonstrated by examining the effective index and the birefringence of the two degenerate fundamental modes in the PCF with a triangular air-hole lattice. The MIPM is not restricted to the PCF structure and will be useful in designing various PCF devices.

© 2008 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(350.3950) Other areas of optics : Micro-optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: May 27, 2008
Revised Manuscript: July 18, 2008
Manuscript Accepted: August 10, 2008
Published: August 13, 2008

Kwang No Park and Kyung Shik Lee, "Meshed index profile method for photonic crystal fibers with arbitrary structures," Opt. Express 16, 13175-13187 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, J. C. Knight, and P. St. J. Russel, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  2. S. K. Varshney, M. P. Singh, and R. K. Sinha, "Propagation Characteristics of Photonic Crystal Fibers," J. Opt. Commun. 24, 192-198 (2003).
  3. M. Midrio, M. P. Singh, and C. G. Someda, "The Space Filling Mode of Holey Fibers : An Analytical Vectorial Soultion," J. Lightwave Technol. 18, 1031-1037 (2000). [CrossRef]
  4. Y. Li, Y. Yao, M. Hu, L. Chai, and C. Wang, "Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement," Appl. Opt. 47, 399-406 (2008). [CrossRef] [PubMed]
  5. H. Li, A. Mafi, A. Schülzgen, L. Li, V. L. Temyanko, N. Peyghambarian, and J. V. Moloney, "Analysis and Design of Photonic Crystal Fibers Based on an Improved Effective-Index Method," J. Lightwave Technol. 25, 1224-1230 (2007). [CrossRef]
  6. Y. Li, C. Wang, N. Zhang, C. Wang, and Q. Xing, "Analysis and design of terahertz photonic crystal fibers by an effective-index method," Appl. Opt. 45, 8462-8465 (2006). [CrossRef] [PubMed]
  7. B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, and B. J. Eggleton, "Confinement loss in adiabatic photonic crystal fiber tapers," J. Opt. Soc. Am. B 23, 1965-1974 (2006). [CrossRef]
  8. T. P. White et al, "Calculations of air-guided modes in photonic crystal fibers using the multipole method," Opt. Express 11, 721-732 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-721. [CrossRef]
  9. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method," J. Lightwave Technol. 20, 1433-1442 (2002). [CrossRef]
  10. F. Brechet et al, "Complete analysis of the propagation characteristics into photonic crystal fibers, be the finite element method," J. Optical Fiber Technol. 6, 181-201 (2001). [CrossRef]
  11. M. A. R. Franco, H. T. Hattori, F. Sircilli, A. Passaro, and N. M. Abe, "Finite Element Analysis of Photonic Crystal Fiber," in PROC IEEE MTT-S IMOC, 5-7 (2001).
  12. K. Saitoh and M. Koshiba, "Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers," J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  13. W. Zhi, R, Guobin, and L. Shuqin, "A Novel Supercell Overlapping Method for Different Photonic Crystal Fibers," J. Lightwave Technol. 22, 903-916 (2004). [CrossRef]
  14. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Localized Function Method for Modeling Defect Modes in 2-D Photonic Crystals," J. Lightwave Technol. 17, 2078-2081 (1999). [CrossRef]
  15. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  16. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers : An efficient modal model," J. Lightwave Technol. 17, 1093-1101 (1999). [CrossRef]
  17. Z. Zhang and S. Satpathy, "Electromagnetic wave propagation in structures: Bloch wave solution of Maxwell's equation," Phys. Rev. Lett. 65, 2650-2653 (1990). [CrossRef] [PubMed]
  18. S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167. [CrossRef] [PubMed]
  19. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fiber," Opt. Express 10, 853-864 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853">http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853. [PubMed]
  20. K. N. Park and K. S. Lee, "Improved effective index method for analysis of photonic cyrstal fibers," Opt. Lett. 30, 958-960 (2005). [CrossRef] [PubMed]
  21. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, "Supercell lattice method for photonic crystal fibers," Opt. Express 11, 980-991 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-980. [CrossRef] [PubMed]
  22. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey Optical Fibers: An Efficient Modal Model," J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  23. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  24. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1994).
  25. I. Kimel and L. R. Elias, "Relations between Hermite and Laguerre Gaussian modes," IEEE J. Quant. Electron. 29, 2562-2567 (1993). [CrossRef]
  26. T.-L. Wu and C.-H. Chao, "Photonic Crystal Fiber Analysis Through the Vector Boundary-Element Method : Effect of Elliptical Air Hole," IEEE Photon. Tech. Lett. 16, 126-128 (2004). [CrossRef]
  27. A. Ferrando, E. Silvestre, P. Andres, and J. J. Miret, "Designing the properties of dispersion-�?attened photonic crystal �?bers," Opt. Express 9, 687-697 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-687. [CrossRef] [PubMed]
  28. M. J. Steel, P. T. P. White, C. M. Sterke, R. C. McPhedran, and L. C. Bottn, "Symmerty and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited