OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13240–13266

Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power

Jay W. Dawson, Michael J. Messerly, Raymond J. Beach, Miroslav Y. Shverdin, Eddy A. Stappaerts, Arun K. Sridharan, Paul H. Pax, John E. Heebner, Craig W. Siders, and C.P.J. Barty  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13240-13266 (2008)
http://dx.doi.org/10.1364/OE.16.013240


View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber’s MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

© 2008 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4480) Lasers and laser optics : Optical amplifiers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 20, 2008
Revised Manuscript: August 1, 2008
Manuscript Accepted: August 3, 2008
Published: August 13, 2008

Citation
Jay W. Dawson, Michael J. Messerly, Raymond J. Beach, Miroslav Y. Shverdin, Eddy A. Stappaerts, Arun K. Sridharan, Paul H. Pax, John E. Heebner, Craig W. Siders, and C.P.J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fibre lasers," J. Phys. B 38, 681 (2005). [CrossRef]
  2. T. Simpson, F. Doft, P. Peterson, and A. Gavrielides, "Coherent combining of spectrally broadened fiber lasers," Opt. Express 15, 11731-11740 (2007). [CrossRef] [PubMed]
  3. A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control," in Proc. of the SPIE: Fiber Lasers II: Technology, Systems, and Applications, 5709, 165-174 (The International Society for Optical Engineering, 2005).
  4. S. Chen, Y. Li, and K. Lu, "Branch arm filtered coherent combining of tunable fiber lasers," Opt. Express 13, 7878-7883 (2005). [CrossRef] [PubMed]
  5. J. Boullet, D. Sabourdy, A. D. Berthelemot, V. Kermène, D. Pagnoux, P. Roy, B. Dussardier, and W. Blanc, "Coherent combining in an Yb-doped double-core fiber laser," Opt. Lett. 30, 1962-1964 (2005). [CrossRef] [PubMed]
  6. J. Xu, S. Zhao, S. Zhan, R. Hou, Y. Li, L. Shi, and S. Fang, "High power high brightness laser source for material processing through incoherent beam combination," Proc. of the SPIE 6722, 67221D-1-5 (The International Society for Optical Engineering, 2007). [CrossRef]
  7. R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, "High-brightness slab-coupled optical waveguide laser arrays," IEEE Photon. Tech. Lett. 17, 959-961 (2005). [CrossRef]
  8. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007). [CrossRef]
  9. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally Beam - Combined Fiber Lasers for High - Average - Power Applications," IEEE J. of Sel. Top. Quantum Electron. 13, 487-497 (2007). [CrossRef]
  10. D. Walton, S. Gray, J. Wang, M. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, "Kilowatt - Level, Narrow - Linewidth Capable Fibers and Lasers," Proc. of SPIE 6453 (2007). [CrossRef]
  11. J. D. Hansryd, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Tech. 19, 1691-1697 (2001). [CrossRef]
  12. J. C. Knight, "Photonic Crystal Fibers and Fiber Lasers," J. Opt. Soc. Am. B 24,1661-1668 (2007). [CrossRef]
  13. P. S. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Tech. 24, 4729-4749 (2006). [CrossRef]
  14. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, "Comparative study of large-mode holey and conventional fibers," Opt. Lett. 26, 1045-1047 (2001). [CrossRef]
  15. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). [CrossRef] [PubMed]
  16. G. Bonati, H. Voelckel, T. Gabler, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T. Schreiber, S. Nolte, and H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Photonics West, Late Breaking Developments, Session 5709-2a (The International Society for Optical Engineering, 2005).
  17. Y. Anan'ev, Theoretical studies of scaling double-clad fiber lasers to high power (St. Petersburg Technical University, 2001).
  18. D. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 207-217 (2001). [CrossRef]
  19. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, and V. Hernandez, "Kilowatt-class single-frequency fiber sources," Proc. SPIE 5709, (2005). [CrossRef]
  20. A. Carter and B. Samson, "New technology advances applications for high-power fiber lasers," Military Aerospace Electron. 16, 16-21 (2005).
  21. Y. Wang, C. Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Tech. Lett. 16, 63-65 (2004). [CrossRef]
  22. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, "The Rising Power of Fiber Lasers and Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 537-545 (2007). [CrossRef]
  23. L. Zenteno, "High-power double-clad fiber lasers," IEEE J. Lightwave Technol. 11, 1435-1446 (1993). [CrossRef]
  24. W. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102-114 (1986). [CrossRef]
  25. D. E. Gray, American Institute of Physics Handbook Third Edition (McGraw-Hill, 1972.)
  26. W. Koechner, Solid state laser engineering 6th edition (Springer, 2006).
  27. M. Y. Cheng, Y. C. Chang, and A. Galvanauskas, "High-energy and high peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005). [CrossRef] [PubMed]
  28. R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett. 20, 62-64 (1972). [CrossRef]
  29. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). [CrossRef] [PubMed]
  30. E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, "Stimulated Raman scattering in a fiber with bending loss," Opt. Comm. 169, 87-91 (1999). [CrossRef]
  31. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, "Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression," Proc. Lasers and Electro-Optics, (Optical Society of America, 2005).
  32. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-461 (2005). [CrossRef] [PubMed]
  33. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74,2248-2251 (1995). [CrossRef] [PubMed]
  34. A. Smith, B. Do, and M. Soderlund, "Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb3+ doped fused silica," Proc. SPIE 6453, (2007).
  35. A. A. Said, T. Xia, A. Dogarlu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, "Measurement of the optical damage threshold in fused quartz," Appl. Opt. 36, 3374-3376 (1995). [CrossRef]
  36. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988). [CrossRef]
  37. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurkhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction limited brightness," in Proceedings of the Conference on Lasers and Electro-Optics Europe, (Optical Society of America, 2005) (Note: Used 14µm MFD fiber implying 13W/µm2 power handling capability without damage.) [CrossRef]
  38. See for example products by LIMO Lissotschenko MIkrooptik, Jenoptik, IPG Photonics, Newport/Spectra Physics for recent diode laser brightness capabilities
  39. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Comm. 136, 375-378 (1997). [CrossRef]
  40. M. H. Muendel, "Optical fiber structure for efficient use of pump power," United States Patent 5,533,163, (1996).
  41. P. R. Morkel, K. P. Jedrzejewski, and E. R. Taylor, "Q-switched Neodymium-doped phosphase glass fiber lasers," IEEE J. Quantum Electron. 29, 2178-2188 (1993). [CrossRef]
  42. J. Buck, Fundamentals of Opitcal Fibers (Wiley, 1995.)
  43. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006). [CrossRef] [PubMed]
  44. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultralarge modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006). [CrossRef] [PubMed]
  45. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973). [CrossRef]
  46. A. K. Ghatak, I. C. Goyal, and R. Jindal, "Design of waveguide refractive index profile to obtain flat modal field," Proc. SPIE 3666, 40-44 (2003). [CrossRef]
  47. D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. of Am. 66, 311-320 (1976). [CrossRef]
  48. R. T. Schermer, "Mode scalability in bent optical fibers," Opt. Express 15, 15674-15701 (2007). [CrossRef] [PubMed]
  49. M. D. Feit and J. A. Fleck, "Computation of mode properties in optical fiber waveguides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980). [CrossRef] [PubMed]
  50. J. M. Fini, "Bend-compensated design of large mode area fibers," Opt. Lett. 31, 1963-1965 (2006). [CrossRef] [PubMed]
  51. L. Dong, X. Peng, and J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. of Am. B 24, 1689-1697 (2007). [CrossRef]
  52. K. H. Liao, A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. Mourou, J. Nees, and A. Galvanauskas, "Generation of hard X-rays using an ultrafast fiber laser system," Opt. Express 15, 13942-13948 (2007). [CrossRef] [PubMed]
  53. R. J. Beach, "CW theory of quasi-three level end-pumped laser oscillators," Opt. Comm. 123, 385-393 (1996). [CrossRef]
  54. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995). [CrossRef]
  55. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 331049-1056 (1997). [CrossRef]
  56. J. Nilsson, "High Power Fiber Lasers and Amplifiers," SC 290, The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OSA, 2007.) [PubMed]
  57. A. E. Siegman, Lasers (University Science Books, 1986), Chapter 15.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited