OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13287–13295

Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs

Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13287-13295 (2008)
http://dx.doi.org/10.1364/OE.16.013287


View Full Text Article

Enhanced HTML    Acrobat PDF (1677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental and theoretical study on the optical properties of arrays of gold nanoparticle in-tandem pairs (nanosandwiches). The well-ordered Au pairs with diameters down to 35 nm and separation distances down to 10 nm were fabricated using extreme ultraviolet (EUV) interference lithography. The strong near-field coupling of the nanoparticles leads to electric and magnetic resonances, which can be well reproduced by Finite-Difference Time-Domain (FDTD) calculations. The influence of the structural parameters, such as nanoparticle diameter and separation distance, on the hybridized modes is investigated. The energy and lifetimes of these modes are studied, providing valuable physical insight for the design of novel plasmonic structures and metamaterials.

© 2008 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Materials

History
Original Manuscript: June 30, 2008
Revised Manuscript: July 25, 2008
Manuscript Accepted: July 28, 2008
Published: August 13, 2008

Citation
Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, "Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs," Opt. Express 16, 13287-13295 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. G. C. Schatz and R. P Duyne, "Electromagnetic mechanism of surface enhanced spectroscopy," in Handbook of Vibrational Spectroscopy, J. M. Chalmers, P. R. Griffiths, eds., (John Wiley, 2002).
  3. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  4. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267 (2007). [CrossRef]
  5. M. Quinten and U. Kreibig, "Optical properties of aggregates of small metal particles," Surf. Sci. 172, 557-577 (1986) [CrossRef]
  6. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-828 (1985). [CrossRef]
  7. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003). [CrossRef]
  8. T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004). [CrossRef]
  9. C. Dahmen, B. Schmidt, and G. von Plessen, "Radiation damping in metal nanoparticle pairs," Nano Lett. 7, 318-322 (2007). [CrossRef] [PubMed]
  10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  12. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  13. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006). [CrossRef] [PubMed]
  14. K.-H. Su, Q.-H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006). [CrossRef]
  15. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators," Small 3,294-299 (2007). [CrossRef] [PubMed]
  16. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899 (2004). [CrossRef]
  17. N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lthography," Opt. Express 15, 501-507 (2007). [CrossRef] [PubMed]
  18. H.-K. Yuan, K. C. Uday, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. Express 15, 1076-1082 (2007). [CrossRef] [PubMed]
  19. H. H. Solak, Y. Ekinci, P. Käser, and S. J. Park, "Photon-beam lithography reaches 12.5 nm half-pitch resolution," Vac. Sci. Technol. B 25, 91-95 (2007). [CrossRef]
  20. Y. Ekinci, H. H. Solak, C. Padeste, J. Gobrecht, M. P. Stoykovich, and P. F. Nealey, "20 nm Line/Space Patterns in HSQ Fabricated by EUV Interference Lithography," Microelectron. Eng. 84, 700-704 (2007). [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, 3rd Edition (Artech House, 2005).
  22. CRC Handbook of Chemistry and Physics, 87th Ed. (CRC Press, 2006).
  23. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  24. A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 (1982). [CrossRef]
  25. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. van Duyne, G. C. Schatz, L. Gunnarson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003). [CrossRef]
  26. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961). [CrossRef]
  27. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  28. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in plasmonic crystals," Phys. Rev. Lett. 94, 113901 (2005). [CrossRef] [PubMed]
  29. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, "Controlling Fano interference in a plasmonic lattice," Phys. Rev. B. 76, 201405(R) (2007).</> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited