OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13381–13390

Fluorescence correlation spectroscopy in a reverse Kretchmann surface plasmon assisted microscope

N. Calander, P. Muthu, Z. Gryczynski, I. Gryczynski, and J. Borejdo  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13381-13390 (2008)
http://dx.doi.org/10.1364/OE.16.013381


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence Correlation Spectroscopy (FCS) demands a high rate of photon detection per molecule, low background, and large fluctuations of fluorescence associated with translational motion. The new approach presented here, Surface Plasmon Assisted Microscope (SPAM), meets these requirements by drastically limiting the observation volume. In this method, the observational layer is made so thin that fluctuations are mostly due to the axial motion of molecules. This is conveniently realized by placing a sample on a thin metal film and illuminating it with a laser beam through an aqueous medium. The excited fluorophores close to the surface couple (via near-field interactions) to surface plasmons in the metal. Propagated surface plasmons decouple on opposite side of the metal film as a far-field radiation and emit in directional manner. Fluorescence is collected with a high Numerical Aperture objective. A confocal aperture inserted in its conjugate image plane reduces lateral dimensions of the detection volume to a diffraction limit. The thickness of the detection layer is reduced further by metal quenching of excited fluorophores at a close proximity (about 30 nm) to the surface. We used a suspension of fluorescent microspheres to show that FCS-SPAM is an efficient method to measure molecular diffusion.

© 2008 Optical Society of America

OCIS Codes
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: April 30, 2008
Revised Manuscript: July 11, 2008
Manuscript Accepted: July 11, 2008
Published: August 15, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
N. Calander, P. Muthu, Z. Gryczynski, I. Gryczynski, and J. Borejdo, "Fluorescence correlation spectroscopy in a reverse Kretchmann surface plasmon assisted microscope," Opt. Express 16, 13381-13390 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Rigler and E. L. Elson, Fluorescence Correlation Spectroscopy: Theory and Applications, (Berlin: Springer, 2001). [CrossRef]
  2. M. Auer, K., J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS," Drug Discov. Today 3, 457-465 (1998). [CrossRef]
  3. N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981). [CrossRef] [PubMed]
  4. A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy," Biophys J. 85, 3294-302 (2003). [CrossRef] [PubMed]
  5. R. L. Hansen and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998). [CrossRef]
  6. T. Ruckstuhl and S. Seeger, "Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy," Opt. Lett. 29, 569-571 (2004). [CrossRef] [PubMed]
  7. K. Hassler, T. Anhut, R. Rigler, M. Gosch, and T. Lasser, "High count rates with total internal reflection fluorescence correlation spectroscopy," Biophys J. 88, L01-3 (2005). [CrossRef]
  8. P. Schwille, "TIR-FCS: staying on the surface can sometimes be better," Biophys J. 85, 2783-2784 (2003). [CrossRef] [PubMed]
  9. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Springer, 2006). [CrossRef]
  10. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, "Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope," Opt. Express 14, 7878-7888 (2006). [CrossRef] [PubMed]
  11. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface Plasmon-Coupled Emission with Gold Films," J. Phys. Chem. 108, 12568-12574 (2004). [CrossRef]
  12. I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowcz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005). [CrossRef]
  13. Z. Gryczynski, J. Borejdo, E. Matveeva, N. Calander, R. Grygorczyk, J. Harper, and I. Gryczynski, "Minimization of Detection Volume by Surface Plasmon-Coupled Emission," Proc. SPIE S1-S10 (2006).
  14. Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of Detection Volume by Surface Plasmon-Coupled Emission," Anal. Biochem 356, 125-131 (2006). [CrossRef] [PubMed]
  15. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, Application of Surface Plasmon Coupled Emission to Study of Muscle, Biophys. J. 91, 2626-2635 (2006). [CrossRef] [PubMed]
  16. M. J. Natan, and A. L. Lyon, "Surface Plasmon Resonance Biosensing with Colloidal Au Amplification," Metal Nanoparticles, D. l. Feldheim and C. A. Foss, eds., 183-205 (2002).
  17. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  18. V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000). [CrossRef]
  19. TFC-Calc, Optical Coating Design Software, Software Spectra, Inc.: Portland, OR 97229.
  20. C. Tanford, Physical Chemistry of Macromolecules, (John Wiley & Sons, 1963).
  21. D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87, 1351-1359 (2004). [CrossRef] [PubMed]
  22. Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30, 17-26 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited