OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13405–13413

DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring

Guo-Hsuan Peng, Yu-Chieh Chi, and Gong-Ru Lin  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 13405-13413 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common-multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.1590) Ultrafast optics : Chirping
(060.3510) Fiber optics and optical communications : Lasers, fiber
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 28, 2008
Revised Manuscript: July 20, 2008
Manuscript Accepted: July 24, 2008
Published: August 15, 2008

Guo-Hsuan Peng, Yu-chieh Chi, and Gong-Ru Lin, "DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring," Opt. Express 16, 13405-13413 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, "Actively mode-locked tunable dual-wavelength erbium-doped fiber laser," IEEE Photon. Technol. Lett. 14,143-145(2002). [CrossRef]
  2. J. N. Maran, S. LaRochelle, and P. Besnard, "Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature," Opt. Lett. 28, 2082-2084(2003). [CrossRef] [PubMed]
  3. J. Yao, J. P. Yao, and Z. C. Deng, "Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise," Opt. Express. 12,4529-4534 (2004). [CrossRef] [PubMed]
  4. D. S. Moon, U. C. Paek, and Y Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt Express 12, 6147-6152 (2004). [CrossRef] [PubMed]
  5. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, "10 �? 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser," IEEE Photon. Technol. Lett. 12, 25-27 (2000). [CrossRef]
  6. T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, "Locked Multichannel Generation and Management by Use of a Fabry-Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity," IEEE J. Quantum Electron. 38, 458-463 (2002). [CrossRef]
  7. C. G. Lee and C. S. Park, "Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser," IEEE Photon. Technol. Lett. 15, 658-660 (2003). [CrossRef]
  8. K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast Semiconductor-Based Fiber Laser Sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004). [CrossRef]
  9. W. W. Tang, M. P. Fok, and C. Shu, "10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser," Opt. Express. 14, 2158-2163 (2006). [CrossRef] [PubMed]
  10. J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, "Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach-Zehnder Interferometer in a Mode-locked Fiber Ring Laser," IEEE J. Quantum Electron. 43, 85-96 (2007). [CrossRef]
  11. W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007). [CrossRef]
  12. J. Yang, S. C. Tjin, N. Q. Ngo, "Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings," Opt. Fiber Technol. 13, 267-270 (2007). [CrossRef]
  13. G-R Lin, I-H Chiu, and M-C Wu, "1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression," Opt. Express 13, 1008-1014 (2005). [CrossRef] [PubMed]
  14. M. J. Connelly,"Wideband semiconductor optical amplifier steady-state numericalmodel Quantum Electron," IEEE J. Quantum Electron. 37, 439-447 (2001). [CrossRef]
  15. F. W. Tong, W. Lin, D. N. Wang, and P. K. A. Wai, "Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm," Electron. Lett. 40, 594-595 (2004). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited