OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13499–13508

Optofluidic 1×4 switch

Alex Groisman, Steve Zamek, Kyle Campbell, Lin Pang, Uriel Levy, and Yeshaiahu Fainman  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13499-13508 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optofluidic 1×4 switch is designed, fabricated, and tested. The switch is based on a blazed diffraction grating imprinted onto silicone elastomer at the bottom of a microfluidic channel that is filled with liquids with different refractive indices. When the condition of a diffraction maximum is met, the laser beam incident on the grating is deflected by an angle proportional to the refractive index mismatch between the elastomer and the liquid in the channel. The switch was tested using four different aqueous salt solutions generating 0th to 3rd orders of diffraction. The insertion loss was <2.5dB, the extinction ratio was >9.8dB, and the response time was 55 ms. The same basic design can be used to build optofluidic switches with more than 4 outputs.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.4880) Optical design and fabrication : Optomechanics
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Diffraction and Gratings

Original Manuscript: June 25, 2008
Revised Manuscript: August 5, 2008
Manuscript Accepted: August 8, 2008
Published: August 18, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Alex Groisman, Steve Zamek, Kyle Campbell, Lin Pang, Uriel Levy, and Yeshaiahu Fainman, "Optofluidic 1x4 Switch," Opt. Express 16, 13499-13508 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006). [CrossRef] [PubMed]
  2. G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," TrAC-Trends Anal. Chem. 19, 364-378 (2000). [CrossRef]
  3. D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002). [CrossRef] [PubMed]
  4. T. M. Squires,and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005). [CrossRef]
  5. M. Toner and D. Irimia, "Blood-on-a-chip," Annu. Rev. Biomed. Eng. 7, 77-103 (2005). [CrossRef] [PubMed]
  6. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America 103, 2480-2487 (2006). [CrossRef] [PubMed]
  7. D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  8. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  9. U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid.Nanofluid. 4, 97-105 (2008). [CrossRef]
  10. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003). [CrossRef] [PubMed]
  11. D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Appl. Phys. Lett. 87 (2005). [CrossRef]
  12. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660-11667 (2006). [CrossRef] [PubMed]
  13. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  14. M. Gersborg-Hansen, and A. Kristensen, "Optofluidic third order distributed feedback dye laser," Appl. Phys. Lett. 89 (2006). [CrossRef]
  15. Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006). [CrossRef] [PubMed]
  16. M. Loncar, B. G. Lee, L. Diehl, M. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007). [CrossRef] [PubMed]
  17. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005). [CrossRef] [PubMed]
  18. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004). [CrossRef]
  19. R. A. Soref, "Liquid-Crystal Fiberoptic Switch," Opt. Lett. 4, 155-157 (1979). [CrossRef] [PubMed]
  20. M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, "2x2 Optical-Waveguide Matrix Switch Using Nematic Liquid-Crystal," IEEE J. Quantum Electron. 18, 1603-1610 (1982). [CrossRef]
  21. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Novel Hybrid Optically Bistable Switch - The Quantum Well Self-Electro-Optic Effect Device," Appl. Phys. Lett. 45, 13-15 (1984). [CrossRef]
  22. S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical-Intensity Modulation To 40 Ghz Using A Wave-Guide Electrooptic Switch," Appl. Phys. Lett. 50, 1631-1633 (1987). [CrossRef]
  23. D. A. Smith, R. S. Chakravarthy, Z. Y. Bao, J. E. Baran, J. L. Jackel, A. dAlessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, "Evolution of the acousto-optic wavelength routing switch," J. Lightwave Technol. 14, 1005-1019 (1996). [CrossRef]
  24. E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, "2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Opt. Express 12, 588-592 (2004). [CrossRef] [PubMed]
  25. M. Shirasaki, H. Takamatsu, and T. Obokata, "Bistable Magneto-Optic Switch For Multimode Optical Fiber," Appl. Opt. 21, 1943-1949 (1982). [CrossRef] [PubMed]
  26. V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R. Quake, "Scaling properties of a low-actuation pressure microfluidic valve," J. Appl. Phys. 95, 393-398 (2004). [CrossRef]
  27. M. G. Moharam, and T. K. Gaylord, "Diffraction Analysis Of Dielectric Surface-Relief Gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  28. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory Of Periodic Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. MT23, 123-133 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited