OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13517–13525

Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics

Xiaoyu Miao, Benjamin K. Wilson, Suzie H. Pun, and Lih Y. Lin  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13517-13525 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonics, a rapidly emerging subdiscipline of nanophotonics, is aimed at exploiting surface plasmons for important applications, including sensing, waveguiding, and imaging. Parallel to these research efforts, technology yielding enhanced scattering and absorption of localized surface plasmons (LSPs) provides promising routes for trapping and manipulation of micro and nano scale particles, as well as biomolecules with low laser intensity due to high energy conversion efficiency under resonant excitation. In this paper, we show that the LSP-induced scattering field from a self-assembled gold nanoparticle array can be used to sustain trapping of single micron-sized particles with low laser intensity. Moreover, we demonstrate for the first time efficient localized concentration of submicron sized particles and DNAs of various sizes through photothermal effect of plasmonics.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 7, 2008
Revised Manuscript: August 10, 2008
Manuscript Accepted: August 12, 2008
Published: August 18, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Xiaoyu Miao, Benjamin K. Wilson, Suzie H. Pun, and Lih Y. Lin, "Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics," Opt. Express 16, 13517-13525 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano. Lett. 5, 1569-1574 (2002). [CrossRef]
  2. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002-1 - 113002-4 (2006). [CrossRef]
  3. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano. Lett. 5, 829-834 (2005). [CrossRef] [PubMed]
  4. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005). [CrossRef] [PubMed]
  5. S. R. Sershen, S. L. Westcott, N. S. Halas, and J. L. West, "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery," J. Biomed. Mater. Res. 51, 293-298 (2000). [CrossRef] [PubMed]
  6. D. A. Boyd, L. Greengard, L. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, "Plasmon-assisted chemical vapor deposition," Nano. Lett. 6, 2592-2597 (2006). [CrossRef] [PubMed]
  7. G. L. Liu, J. Kim, Y. Lu, and L. Lee, "Optofluidic control using photothermal nanoparticles," Nat. Mat. 5, 27-32 (2005). [CrossRef]
  8. X. Miao, B. K. Wilson, and L. Y. Lin, "Localized surface plasmon assisted microfluidic mixing," App. Phys. Lett. 92, 124108-1 - 124108-3 (2008). [CrossRef]
  9. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  10. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA,  94, 4853-4860 (1997). [CrossRef] [PubMed]
  11. L. Novotny, R. X. Bian, and S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-649 (1997). [CrossRef]
  12. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-1 - 123601-4 (2002). [CrossRef]
  13. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007). [CrossRef]
  14. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photo. 2, 365-370 (2008). [CrossRef]
  15. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1 - 186804-4 (2008). [CrossRef]
  16. X. Miao, B. K. Wilson, G. Cao, S. H. Pun, and L. Y. Lin, "Long-range trapping and rotation of nanowires by plasmonic tweezers," Submitted toNano Lett.
  17. D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103-1 - 188103-4 (2002). [CrossRef]
  18. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-1 - 085417-5 (2006).
  19. X. Miao and L. Y. Lin, "Large dielectrophoresis force and torque induced by localized surface plasmon resonance of a cap-shaped Au nanoparticle array," Opt. Lett. 32, 295-297 (2007). [CrossRef] [PubMed]
  20. E. L. Hinrichsen, J. Feder, and T. Jøssang, "Geometry of random sequential adsorption," J. Stat. Phys. 44, 793-827 (1986). [CrossRef]
  21. X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum. Electron. 13, 1655-1661 (2007). [CrossRef]
  22. H. Xu and M. Käll, "Surface plasmon enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802-1 - 246802-4 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (822 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited