OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13579–13584

Sub-diffraction-limited interference photolithography with metamaterials

Ting Xu, Yanhui Zhao, Junxian Ma, Changtao Wang, Jianhua Cui, Chunlei Du, and Xiangang Luo  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13579-13584 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present that an interference lithography technique beyond the diffraction limit can be theoretically achieved by positing an anisotropic metamaterial under the conventional lithographic mask. Based on the special dispersion characteristics of the metamaterial, only the enhanced evanescent waves with high spatial frequencies can transmit through the metamaterial and contribute to the lithography process. Rigorous coupled wave analysis shows that with 442nm exposure light, one-dimensional periodical structures with 40nm features can be patterned. This technique provides an alternative method to fabricate large-area nanostructures.

© 2008 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6690) Optics at surfaces : Surface waves
(260.3160) Physical optics : Interference
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 17, 2008
Revised Manuscript: August 4, 2008
Manuscript Accepted: August 5, 2008
Published: August 19, 2008

Ting Xu, Yanhui Zhao, Junxian Ma, Changtao Wang, Jianhua Cui, Chunlei Du, and Xiangang Luo, "Sub-diffraction-limited interference photolithography with metamaterials," Opt. Express 16, 13579-13584 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996). [CrossRef]
  2. M. C. Mcalpine, R. S. Friedman, C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003). [CrossRef]
  3. R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, E. V. Tressler, "PREVAIL- Electron. projection technology approach for next generation lithography," IBM J. Res. Dev. 45, 615-638 (2001). [CrossRef]
  4. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, "Terabit-per-square-inch data storage with the atomic force microscope," Appl. Phys. Lett. 75, 3566-3568 (1999). [CrossRef]
  5. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with a phase-shifting mask," IEEE Trans. on Electron Devices.  29, 1828-1836 (1982) [CrossRef]
  6. J. G. Goodberlet and H. Kavak,   "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002). [CrossRef]
  7. M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami,   "Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist," Appl. Phys. Lett. 86, 201113 (2005). [CrossRef]
  8. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  9. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004). [CrossRef] [PubMed]
  10. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000) [CrossRef] [PubMed]
  11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  13. M. J. Weber,  Handbook of Optical Materials (CRC Press, Boca Raton, 2003), Chap. 4, pp. 352-355.
  14. S. Tretyakov,  Analytical Modeling in Applied Electromagnetics (Artech House, Norwood, MA, 2000).
  15. N. Fang, H. Lee, C. Sun, and X. Zhang,   "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  16. L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited