OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13606–13616

The effects of degraded spatial coherence on ultrafast-laser channel etching

Jesse Dean, Martin Bercx, Felix Frank, Rodger Evans, Santiago Camacho-López, Marc Nantel, and Robin Marjoribanks  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13606-13616 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When laser-etching channels through solid targets, the etch-rate is known to decrease with increasing depth, partly because of absorption at the sides of the channel. For ultrafast-laser pulses at repetition rates >100MHz, we show that the etch-rate is also affected by optical properties of the beam: the channel acts as a waveguide, and so the pulses will decompose into dispersive normal modes. Additionally, plasma on the inner surface of the channel will cause scattering of the beam. These effects will cause a loss of spatial coherence in the pulse, which will affect the propagated intensity distribution and ultimately the etch-rate. We have characterized this effect for various foil thicknesses to determine the evolution of the beam while drilling through metal.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(080.1510) Geometric optics : Propagation methods
(350.3850) Other areas of optics : Materials processing
(350.5400) Other areas of optics : Plasmas

ToC Category:
Coherence and Statistical Optics

Original Manuscript: June 3, 2008
Revised Manuscript: July 30, 2008
Manuscript Accepted: August 17, 2008
Published: August 20, 2008

Jesse Dean, Martin Bercx, Felix Frank, Rodger Evans, Santiago Camacho-López, Marc Nantel, and Robin Marjoribanks, "The effects of degraded spatial coherence on ultrafast-laser channel etching," Opt. Express 16, 13606-13616 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997). [CrossRef]
  2. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
  3. S. Camacho-Lopez, R. Evans, C. Greenhalgh, C. Torti, J. Robertson, R. Marjoribanks, P. Herman, M. Nantel, and L. Lilge, "Single-pulse and �??pulsetrain-burst�?? (>100 MHz) effects in ultrafast laser processing of metals, glasses, and bio-tissues," in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2003 (Optical Society of America, Baltimore, MD, USA), TOPS (2003).
  4. S. Nolte, G. Kamlage, R. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, "Microstructuring with femtosecond lasers," Adv. Eng. Mat. 2, 23-27 (2000).
  5. H. Zheng, E. Gan, and G. C. Lim, "Investigation of laser via formation technology for the manufacturing of high density substrates," Opt. Lasers Eng. 36, 355-371 (2001). [CrossRef]
  6. J. Neev, L. Da Silva, M. Feit, M. Perry, A. Rubenchik, and B. Stuart, "Ultrashort pulse lasers for hard tissue ablation," IEEE J. Sel. Top. Quantum Electron. 2, 790-800 (1996). [CrossRef]
  7. F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, "Non-thermal ablation of neural tissue with femtosecond laser pulses," Appl. Phys. B 66, 121-128 (1998). [CrossRef]
  8. T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, "Corneal refractive surgery with femtosecond lasers," IEEE J. Sel. Top. Quantum Electron. 5, 902-910 (1999). [CrossRef]
  9. S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
  10. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996). [CrossRef]
  11. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
  12. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, "Micromachining of quartz with ultrashort laser pulses," Appl. Phys. A 65, 367-373 (1997).
  13. L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001). [CrossRef]
  14. M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, "Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses," Appl. Phys. A 69, 883-886 (1999).
  15. P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, "Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains," in Commercial and Biomedical Applications of Ultrafast Lasers, M. K. Reed and J. Neev, eds., pp. 148-155 (1999).
  16. R. Marjoribanks, Y. Kerachian, P. Herman, S. Camacho-Lopez, and M. Nantel, "Pulsetrain �??burst�?? machining: ultrafast-laser microprocessing at ultrahigh (>100 MHz) pulse-rates," in Technical Digest, Conference on Lasers and Electro-Optics (CLEO), 2001 (Optical Society of America, Baltimore, MD, USA), TOPS Vol. 56 (2001).
  17. D. Breitling, D. Fohl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Applications, vol. 96 of Topics in Applied Physics, pp. 131-156 (Springer Berlin / Heidelberg, 2004). [CrossRef]
  18. A. M. Komashko, M. D. Feit, A. M. Rubenchik, M. D. Perry, and P. S. Banks, "Simulation of material removal efficiency with ultrashort laser pulses," Appl. Phys. A 69, 95-98 (1999).
  19. S. R. Franklin and R. K. Thareja, "Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material," Appl. Surf. Sci. 222, 293-306 (2004). [CrossRef]
  20. B.-M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, P. M. Celliers, J. Eichler, and L. B. D. Silva, "Influence of pulse duration on ultrashort laser pulse ablation of biological tissues," J. Biomed. Opt. 6, 332-338 (2001). [CrossRef]
  21. A. E. Wynne and B. C. Stuart, "Rate dependence of short-pulse laser ablation of metals in air and vacuum," Appl. Phys. A 76, 373-378 (2003).
  22. R. S. Marjoribanks, F. W. Budnik, L. Zhao, G. Kulcsar, M. Stanier, and J. Mihaychuk, "High-contrast terawatt chirped-pulse-amplification laser that uses a 1-ps Nd:glass oscillator," Opt. Lett. 18, 361-363 (1993). [CrossRef] [PubMed]
  23. J. Dean, M. Bercx, M. Nantel, and R. Marjoribanks, "Transverse coherence measurement using a folded Michelson interferometer," J. Opt. Soc. Am. A 24, 1742-1746 (2007). [CrossRef]
  24. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995), chap. 5, pp. 252-287.
  25. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys. Rev. B 26, 5366-5381 (1982).
  26. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155-1172 (1983).
  27. C. S. Nielsen and P. Balling, "Deep drilling of metals with ultrashort laser pulses: A two-stage process," J. Appl. Phys. 99, 093101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited