OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13809–13817

Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab

Takayuki Yamamoto, Masaya Notomi, Hideaki Taniyama, Eiichi Kuramochi, Yutaka Yoshikawa, Yoshio Torii, and Takahiro Kuga  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13809-13817 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have presented a novel design of a photonic crystal slab (PCS) nanocavity, in which the electric field of the cavity mode is strongly localized in free space. The feature of the cavity is a linear air slot introduced to the center of the mode-gap confined PCS cavity. Owing to the discontinuity of the dielectric constant, the electric field of the cavity mode is strongly enhanced inside the slot, allowing strong matter-field coupling and large interaction volume in free space. Using finite-difference time-domain method, we calculate the properties of the cavity mode as a function of the slot width. The calculated quality factor is still as high as 2×105 and the mode volume is as small as 0.14 of a cubic wavelength in a vacuum, even if 200-nm-wide slot is introduced to the PCS.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: April 24, 2008
Revised Manuscript: June 15, 2008
Manuscript Accepted: July 14, 2008
Published: August 22, 2008

Takayuki Yamamoto, Masaya Notomi, Hideaki Taniyama, Eiichi Kuramochi, Yutaka Yoshikawa, Yoshio Torii, and Takahiro Kuga, "Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab," Opt. Express 16, 13809-13817 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003). [CrossRef]
  2. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fusedsilica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005). [CrossRef]
  4. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  5. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef]
  7. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  8. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature (London) 432, 200-203 (2004). [CrossRef]
  9. H. J. Kimble, "Strong interactions of single atoms and photons in cavity QED," Phys. Scr. T76, 127-137 (1998). [CrossRef]
  10. B. Lev, K. Srinivasan, P. E. Barclay, O. Painter, and H. Mabuchi, "Feasibility of detecting single atoms using photonic bandgap cavities," Nanotechnology 15, S556-S561 (2004). [CrossRef]
  11. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, "Observation of strong coupling between one atom and a monolithic microresonator," Nature (London) 443, 671-674 (2006). [CrossRef]
  12. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity," Phys. Rev. B 70, 081306(R) (2004).
  13. J. Vu�?ckovi�??c, M. Lon�?car, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).
  14. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  15. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005). [CrossRef] [PubMed]
  16. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Express 29, 1626-1628 (2004).
  17. R. W. Fox, S. L. Gilbert, L. Hollberg, and J. H. Marquardt, "Optical probing of cold trapped atoms," Opt. Lett. 18, 1456-1458 (1993). [CrossRef] [PubMed]
  18. K. M. Birnbaum, A. S. Parkins, and H. J. Kimble, "Cavity QED with multiple hyperfine levels," Phys. Rev. A 74, 063872 (2006).
  19. F. Dell�??Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977- 4993 (2007). [CrossRef] [PubMed]
  20. C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited