OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13933–13948

Effects of optical variables in immersion lens-based near-field optics

Wan-Chin Kim, Yong-Joong Yoon, Hyun Choi, No-Cheol Park, and Young-Pil Park  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13933-13948 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the effects of optical variables, such as illumination state, focal position variation, near-field air-gap height, and refractive index mismatch, in immersion lens-based near-field optics on the resultant field propagation characteristics, including spot size, focal depth, and aberrations. First, to investigate the general behaviors of various incident polarization states, focused fields near the focal planes in simple two- or three-layered media structures are calculated under considerations of refractive index mismatch, geometric focal position variations, and air-gap height in a multi-layered medium. Notably, for solid immersion near-field optics, although purely TM polarized illumination generates a stronger and 15% smaller beam spot size in the focal region than in the case of circularly polarized incident light, the intensity of the focused field decreases sharply from the interface between air and the third medium. For the same optical configurations, we show that changes in geometric focal position to the recording or detecting medium increases focal depth. Finally, through focused field analysis on a ROM (read-only memory) and a RW (rewritable) medium, compound effects of considered variables are discussed. The resultant field propagation behaviors described in this study may be applicable to the design of either highly efficient reflection or transmission near-field optics for immersion lens based information storage, microscopy and lithographic devices.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(210.0210) Optical data storage : Optical data storage
(260.5430) Physical optics : Polarization

ToC Category:
Imaging Systems

Original Manuscript: May 16, 2008
Revised Manuscript: August 7, 2008
Manuscript Accepted: August 22, 2008
Published: August 25, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Wan-Chin Kim, Yong-Joong Yoon, Hyun Choi, No-Cheol Park, and Young-Pil Park, "Effects of optical variables in immersion lens-based near-field optics," Opt. Express 16, 13933-13948 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  2. C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005). [CrossRef]
  3. T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, "Evanescent imaging with induced polarization by using a solid immersion lens," Opt. Lett. 32, 124-126 (2007). [CrossRef]
  4. T. Chen and T. D. Milster, "Properties of induced polarization evanescent reflection with a solid immersion lens (SIL)," Opt. Express 15, 1191-1204 (2007). [CrossRef] [PubMed]
  5. M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006). [CrossRef]
  6. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, "Evanescent wave imaging in optical lithography," Proc. SPIE 6154, 100-108 (206).
  7. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, "Four beams evanescent waves interference lithography for patterning of two dimensional features," Opt. Express 15, 3437-3451 (2007). [CrossRef] [PubMed]
  8. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  9. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997). [CrossRef] [PubMed]
  10. F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004). [CrossRef]
  11. J. S. Jo, T. D. Milster, and J. K. Erwin, "Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope," Opt. Eng. 41, 1866-1875 (2002). [CrossRef]
  12. P. Török, P. Varga, Z. Laczik, and G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  13. P. Török, P. Varga, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I," J. Opt. Soc. Am. A 12, 2136-2144 (1995). [CrossRef]
  14. P. Török, P. Varga, A. Konkol, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II," J. Opt. Soc. Am. A 13, 2232-2238 (1996). [CrossRef]
  15. A. van de Nes, L. Billy, S. Pereira, and J. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004). [CrossRef] [PubMed]
  16. T. D. Milster, J. S. Jo, and K. Hirota, "Roles of Propagating and Evanescent Waves in Solid Immersion Lens Systems," Appl. Opt. 38, 5046-5057 (1999). [CrossRef]
  17. S.-S. Kim, Y.-K. Kim, I.-S. Park, and S.-C. Shin, "Optical properties of a thin-film stack illuminated by a focused field," J. Opt. Soc. Am. A 17, 1454-1460 (2000). [CrossRef]
  18. D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001). [CrossRef] [PubMed]
  19. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  20. Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited