OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13949–13954

Coherently driven semiconductor quantum dot at a telecommunication wavelength

Hiroyuki Takagi, Toshihiro Nakaoka, Katsuyuki Watanabe, Naoto Kumagai, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13949-13954 (2008)
http://dx.doi.org/10.1364/OE.16.013949


View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 µm through Rabi oscillation. The telecom-band exciton-qubit system incorporates standard optical fibers and fiber optic devices. The coherent manipulation of the two-level system compatible with flexible and stable fiber network paves the way toward practical optical implementation of quantum information processing devices.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(270.0270) Quantum optics : Quantum optics
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 30, 2008
Revised Manuscript: July 23, 2008
Manuscript Accepted: August 20, 2008
Published: August 25, 2008

Citation
Hiroyuki Takagi, Toshihiro Nakaoka, Katsuyuki Watanabe, Naoto Kumagai, and Yasuhiko Arakawa, "Coherently driven semiconductor quantum dot at a telecommunication wavelength," Opt. Express 16, 13949-13954 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
  2. D. P. DiVicenzo, "Quantum computation," Science 270, 255-261 (2000). [CrossRef]
  3. N. Gisin and R. Thew, "Quantum communication," Nature Photon. 1, 165-171 (2007). [CrossRef]
  4. H. Htoon et al., "Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots," Phys. Rev. Lett. 88, 087401 (2002). [CrossRef]
  5. T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "Rabi Oscillations of Excitons in Single Quantum Dots," Phys. Rev. Lett. 87, 133603 (2001). [CrossRef] [PubMed]
  6. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, "An all-optical quantum gate in a semiconductor quantum dot," Science 301, 809--811 (2003). [CrossRef] [PubMed]
  7. A. Zrenner, E. Beham, S. Stuffer, F. Findeis, M. Bichler, and G. Abstreiter, "Coherent properties of a two-level system based on a quantum dot photodiode," Nature 418, 612-614 (2002). [CrossRef] [PubMed]
  8. R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska, P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick, "Inversion recovery of single quantum-dot exciton based qubit," Phys. Rev. B 75, 193306 (2007).
  9. A. Zrenner, S. Stuffer, P. Ester, and M. Bichler, "Manipulations of a Qubit in a Semiconductor Quantum Dot," Adv. Solid State Phys. 45, 173-184 (2005). [CrossRef]
  10. S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M. Axt, T. Kuhn, and A. Zrenner, "Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot," Phys. Rev. B 73, 125304 (2006).
  11. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, "Demonstration of a quantum controlled-NOT gate in the telecommunications band," Phys. Rev. Lett. 100,133603 (2008). [CrossRef] [PubMed]
  12. L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Wiley, New York, 1975).
  13. P. Borri, W. Langbein, S. Schneider, and U. Woggon, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  14. J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 78, 3469-3471 (2001). [CrossRef]
  15. F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, "Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields," Appl. Phys. Lett. 78, 2958-2960 (2001). [CrossRef]
  16. R. Oulton, J. J. Finley, A. D. Ashmore, I. D. Gregory, I. D., Mowbray, M. S. Skolnick, M. J. Steer, M. A. San-Lin Liew, Migliorato, and A. J. Cullis, "Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot," Phys. Rev. B 66, 45313 (2002).
  17. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Sot. Am. B 5, 1563-1572 (1988). [CrossRef]
  18. Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih, "Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots," Phys. Rev. B 72, 035306 (2005).
  19. J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, "Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots," Phys. Rev Lett. 91, 127401 (2003). [CrossRef] [PubMed]
  20. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, "Decoherence of Rabi oscillations in a single quantum dot," Phys. Rev. Lett. 94, 057404 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited