OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13979–13989

Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing

Airán Ródenas, Amir H. Nejadmalayeri, Daniel Jaque, and Peter Herman  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13979-13989 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO3) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO3 lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.

© 2008 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.3730) Materials : Lithium niobate
(230.7370) Optical devices : Waveguides
(300.6450) Spectroscopy : Spectroscopy, Raman
(320.7160) Ultrafast optics : Ultrafast technology
(180.5655) Microscopy : Raman microscopy

ToC Category:

Original Manuscript: June 30, 2008
Revised Manuscript: August 9, 2008
Manuscript Accepted: August 11, 2008
Published: August 25, 2008

Airán Ródenas, Amir H. Nejadmalayeri, Daniel Jaque, and Peter Herman, "Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing," Opt. Express 16, 13979-13989 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Wong, ed. Properties of Lithium Niobate (IEE, London, UK, 2002).
  2. E. Cantelar, J. A. Sanz García, G. Lifante, F. Cussó, and P. L. Pernas, "Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides," Appl. Phys. Lett. 86, 161119 (2005). [CrossRef]
  3. P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998). [CrossRef]
  4. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, "Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation," Opt. Express 15, 16880-16885 (2007). [CrossRef] [PubMed]
  5. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994). [CrossRef]
  6. M. Hempstead, J. S. Wilkinson and L. Reekie, "Waveguide lasers operating at 1084 nm in Neodymium-diffused lithium niobate," IEEE Photon. Techol. Lett. 4, 852-855 (1992). [CrossRef]
  7. R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
  8. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, "Photorefractive damage resistant Zn-diffused waveguides in MgO:LiNbO3," Opt. Lett. 16, 995-997 (1991). [CrossRef] [PubMed]
  9. J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO3 waveguides," Electron. Lett. 33, 322-323 (1997). [CrossRef]
  10. F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007). [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  12. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, "Transmission electron microscopy studies of femtosecond laser induced modifications in quartz," Appl. Phys. A 76, 309-311 (2003).
  13. A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006). [CrossRef] [PubMed]
  14. A. H. Nejadmalayeri and P. R. Herman, "Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate," Opt. Express 15, 10842-10854 (2007). [CrossRef] [PubMed]
  15. L. Gui, B. X. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339 (2004). [CrossRef]
  16. J. Burghoff, C. Grebing, S. Nolte, and A. Tuennermann, "Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate," Appl. Phys. Lett. 89, 081108 (2006). [CrossRef]
  17. G. Zhou and M. Gu, "Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal," Opt. Lett. 31, 18 (2006)
  18. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, "Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime," Appl. Phys. Lett. 88, 111109 (2006). [CrossRef]
  19. G. A. Torchia, C. Méndez, A. Ródenas, D. Jaque, I. Arias, and L. Roso, "Near surface channel waveguides fabricated in lithium niobate by femtosecond laser writing," J. Phys. D. Appl. Phys.Submitted.
  20. J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Appl. Phys. A. 89, 127-132 (2007). [CrossRef]
  21. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, "Structural properties of femtosecond laser-induced modifications in LiNbO3," Appl. Phys. A 86, 165-170 (2007).
  22. H. T. Bookey, P. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, "Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 892-894 (2007). [CrossRef]
  23. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, "Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient," Appl. Phys. Let. 90, 241107 (2007) [CrossRef]
  24. A. Ródenas, J. A. Sanz García, D. Jaque, G. A. Torchia, C. Méndez, I. Arias, L. Roso, and F. Agulló-Rueda, "Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals," J. Appl. Phys. 100, 033521 (2006). [CrossRef]
  25. W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing", Nature Photon. 2, 99-104 (2008). [CrossRef]
  26. X. Hu, Y. Dai, L. Yang, J. Song, C. Zhu, and J. Qiu, "Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation," J. Appl. Phys. 101, 023112 (2007). [CrossRef]
  27. T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in zinc oxide," Phys. Rev. 142, 570 (1966). [CrossRef]
  28. V. Caciuc, A. V. Postnikov, and G. Borstel, "Ab initio structure and zone-center phonons in LiNbO3," Phys. Rev. B 61, 8806-88013 (2000).
  29. Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, and M. D. Fontana, "Characterization of short range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy," J. Phys. Cond. Matter. 18, 957-963 (2006). [CrossRef]
  30. F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998). [CrossRef]
  31. A. Jayaraman and A. A. Ballman, "Effect of pressure on the Raman modes in LiNbO3 and LiTaO3," J. Appl. Phys. 60, 1208-1212 (1986). [CrossRef]
  32. S. M. Kostritskii and P. Moretti, "Micro-Raman study of defect structure and phonon spectrum of He implanted LiNbO3 waveguides," Phys. Stat. Sol. (c)  11, 3126-3129 (2004). [CrossRef]
  33. C. A. Merchant, J. S. Aitchison, S. García Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló Rueda, A. J. Kellok, and J. E. E. Baglin, "Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation," Appl. Phys. Lett. 89, 111116 (2006). [CrossRef]
  34. I. Savova, I. Savatinova, and E. Liarokapis, "Phase composition of Z-cut protonated LiNbO3: a Raman study," Opt. Mat. 16, 353-360 (2001). [CrossRef]
  35. R. M. Roth, D. Djukic, Y. S. Lee, R. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, "Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation," Appl. Phys. Lett. 89, 112906 (2006). [CrossRef]
  36. W. D. Johnston Jr., "Nonlinear Optical coefficients and the Raman scattering efficiency of LO and TO phonons in acentric insulating crystals," Phys. Rev. B 1, 3494-3503 (1970).
  37. C. Kittel, "Introduction to Solid State Physics," 8th Ed. Wiley, USA, (2005).
  38. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L Jian, Y. Jiao, and F. Lu, "Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation," Phys. Rev. B.  75, 195101 (2007). [CrossRef]
  39. D. Jaque, F. Chen, and Y. Tan, "Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3," Appl. Phys. Lett. 92, 161908 (2008). [CrossRef]
  40. W. Yang, E. Bricchi, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006). [CrossRef] [PubMed]
  41. E. Bricchi and P. Kazansky, "Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass," Appl. Phys. Lett. 88, 111119 (2006) [CrossRef]
  42. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Appl. Phys. Lett. 91, 247405 (2003) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited