OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 14036–14043

Optical trapping and manipulation of live T cells with a low numerical aperture lens

John Harris and Gail McConnell  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 14036-14043 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical manipulation system that employs both optical and temperature gradients to simultaneously enable trapping, manipulating and imaging of live cells with a low magnification, low numerical aperture objective lens (10×/0.4 N.A.) is reported. This approach negates the requirement for a high N.A. lens used in traditional optical trapping. Our system comprised a dual scanning system and two independent lasers which provided the ability to move the trapping spot independently of the confocal imaging process in close to real-time and without pre-programming. To demonstrate the efficacy of this innovative method, trapping and manipulation of live T cells was simultaneously performed over a field of view exceeding 1 mm2 for extended periods without compromising cell viability.

© 2008 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 16, 2008
Revised Manuscript: August 18, 2008
Manuscript Accepted: August 21, 2008
Published: August 25, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

John Harris and Gail McConnell, "Optical trapping and manipulation of live T cells with a low numerical aperture lens," Opt. Express 16, 14036-14043 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  2. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990). [CrossRef] [PubMed]
  3. M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997). [CrossRef]
  4. W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric study of the forces on microspheres held by optical tweezers," Appl. Opt. 33,1735-1748 (1994). [CrossRef] [PubMed]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed., (Plenum Press, New York, 1995).
  6. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed., (Cambridge University Press, Cambridge, 1997).
  7. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002). [CrossRef] [PubMed]
  8. P. R. T. Jess,  et al. "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Express 14,5779-5791 (2006). [CrossRef] [PubMed]
  9. S. Ebert, K. Travis, B. Lincoln, and J. Guck, "Fluorescence ratio thermometry in a microfludic dual-beam laser trap," Opt. Express 15, 15493-15499 (2007). [CrossRef] [PubMed]
  10. R. Eriksen, V. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602. (2002). [PubMed]
  11. M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003). [CrossRef] [PubMed]
  12. J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007). [CrossRef]
  13. J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008). [CrossRef]
  14. G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006). [CrossRef] [PubMed]
  15. K. Franze,  et al., "Muller cells are living optical fibers in the vertebrate retina," PNAS,  104, 8287-8292 (2007). [CrossRef] [PubMed]
  16. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005). [CrossRef] [PubMed]
  17. A. Schoenle, and S. Hell, "Heating by absorption in the focal plane of an objective lens," Opt. Lett. 23,325-327 (1998). [CrossRef]
  18. D. J. Segelstein, "The complex refractive index of water," (University of Missouri-Kansas City, 1981), as reported at http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind.
  19. F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill, New York, 1965).
  20. C. Wandrey, and D. S. Vidal, "Purification of biometric biomaterials," Ann. N.Y. Acad. Sci. 944,187-198 (2001). [CrossRef]
  21. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical physics, (Pergamon Press, Oxford New York, 1980).
  22. A. B. Lyons, and C. R. Parish, "Determination of lymphocyte division by flow cytometry," J. Immunol. Methods 171,131-137 (1994). [CrossRef] [PubMed]
  23. C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (3646 KB)     
» Media 2: MOV (4077 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited