OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 14255–14262

Design of a photonic crystal fiber for phase-matched frequency doubling or tripling

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 14255-14262 (2008)
http://dx.doi.org/10.1364/OE.16.014255


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a possible phase matching between two fundamental modes guided in an appropriately designed photonic crystal fiber. The phase index matching condition can be perfectly fulfilled for second or third harmonic generation and for wavelengths over a large spectral range, simply by tuning the lattice pitch. This can be achieved in such a structure thanks to the coexistence of total internal reflection and photonic bandgap guidance, leading to two different dispersive behaviours for the fundamental and the harmonic waves.

© 2008 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: March 14, 2008
Revised Manuscript: April 10, 2008
Manuscript Accepted: April 15, 2008
Published: August 28, 2008

Citation
A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, "Design of a photonic crystal fiber for phase-matched frequency doubling or tripling," Opt. Express 16, 14255-14262 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  4. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: molding the flow of light, (Princeton: Princeton University Press, 1995).
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  7. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  8. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D.M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  9. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005). [CrossRef] [PubMed]
  10. J. Lægsgaard and A. Bjarklev, "Photonic crystal fibres with large nonlinear coefficients," J. Opt. A, Pure Appl. Opt. 6, 1-5 (2004). [CrossRef]
  11. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  12. W. H. Reeves, J. C. Knight, and P. St. J. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [PubMed]
  13. J. M. Dudley, G. Genty, and S. Cohen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  14. N. Myrén, and W. Margulis, "Time evolution of frozen-in field during poling of fiber with alloy electrodes," Opt. Express 13, 3438-3444 (2005). [CrossRef] [PubMed]
  15. V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, "Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers," Opt. Lett. 24, 208-210 (1999). [CrossRef]
  16. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, "Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch," Opt. Lett. 31, 1612-1614 (2006). [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., (Academic, 2001).
  18. A. Ortigosa-Blanch, A. Dez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrs, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004). [CrossRef]
  19. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, "Improvements of solid-core photonic bandgap fibers by means of interstitial air holes," Opt. Lett. 32, 1719-1721 (2007). [CrossRef] [PubMed]
  20. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, "Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes," Opt. Express 15, 13783-13795 (2005). [CrossRef]
  21. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  22. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm," Opt. Express 15, 316-324 (2007). [CrossRef] [PubMed]
  23. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fibre with a subwavelength air core," Nat. Photonics 1, 115-118 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited