OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14380–14389

Spun fiber Raman amplifiers with reduced polarization impairments

Sergey Sergeyev, Sergei Popov, and Ari T. Friberg  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14380-14389 (2008)
http://dx.doi.org/10.1364/OE.16.014380


View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel vector model of Raman amplification in a fiber with randomly varying birefringence and unidirectional spin profile. Applying the model, we demonstrate for the first time simultaneous mitigation of polarization mode dispersion and polarization dependence of the Raman gain.

© 2008 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 11, 2008
Revised Manuscript: August 14, 2008
Manuscript Accepted: August 14, 2008
Published: August 29, 2008

Citation
Sergey Sergeyev, Sergei Popov, and Ari T. Friberg, "Spun fiber Raman amplifiers with reduced polarization impairments," Opt. Express 16, 14380-14389 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14380


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Barlow, J. J. Ramskov-Hansen and D. N. Payne, "Birefringence and polarization mode-dispersion in spun single-mode fibers," Appl. Opt. 20,2962-2968 (1981). [CrossRef] [PubMed]
  2. H. S. Lassing, A. M. Oomens, R. Woltjer, P. C. T. van der Laan, and G. G. Woizak, "Development of a magneto-optic current sensor for high, pulsed currents," Rev. Sci. Instrum. 57,851-854 (1986). [CrossRef]
  3. I. G. Clarke, "Temperature-stable spun elliptical-core optical-fiber current transducer," Opt. Lett. 18,158-160 (1993). [CrossRef] [PubMed]
  4. Y. Wang and Ch.-Q. Xu, "Spun FBG sensors with low polarization dependence under transverse force," IEEE Photon. Technol. Lett. 19,477-479 (2007). [CrossRef]
  5. X. Zhu and R. Jain, "Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers," Opt. Express 14, 10261-10277 (2006). [CrossRef] [PubMed]
  6. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-76 (2004). [CrossRef] [PubMed]
  7. A. Hart, R. G. Huff, and K. L. Walker, "Method of making a fiber having low polarization mode dispersion due to a permanent spin," U.S. Patent 5298047 (1994).
  8. P. E. Blaszyk, W. R. Christoff, D. E. Gallagher, R. M. Hawk, and W. J. Kiefer, "Method and apparatus for introducing controlled spin in optical fibers," U.S. Patent 6324873 B1 (2001).
  9. R. E. Schuh, X. Shan, and A. S. Siddiqui, "Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters," J. Lightwave Technol. 16,1583-1588 (1998). [CrossRef]
  10. M. J. Li and D. A. Nolan, "Fiber spin-profile designs for producing fibers with low polarization mode dispersion," Opt. Lett. 23, 1659-1661 (1998). [CrossRef]
  11. D. A. Nolan, X. Chen, and M.-J. Li, "Fibers with low polarization-mode dispersion," J. Lightwave Technol. 22,1066-1077 (2004). [CrossRef]
  12. A. Galtarossa, L. Palmieri, and A. Pizzinat, "Optimized spinning design for low PMD fibers: an analytical approach," J. Lightwave Technol. 19,1502-1512 (2001). [CrossRef]
  13. A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, "Calculation of mean differential group delay of periodically spun randomly birefringent fibers," Opt. Lett. 27,692-694 (2002). [CrossRef]
  14. A. Galtarossa, L. Palmieri, A. Pizzinat, B. S. Marks, and C. R. Menyuk, "An analytical formula for the mean differential group delay of randomly-birefringent spun fibers," J. Lightwave Technol. 21,1635-1643 (2003). [CrossRef]
  15. A. Pizzinat, B. S. Marks, L. Palmieri, C. R. Menyuk, and A. Galtarossa, "Influence of the model for random birefringence on the differential group delay of periodically spun fibers," IEEE Photon. Technol. Lett. 15,819-821 (2003). [CrossRef]
  16. G. Bouquet, L.-A. de Montmorillon, and P. Nouchi, "Analytical solution of polarization mode dispersion for triangular spun fibers," Opt. Lett. 29,2118-2120 (2004). [CrossRef] [PubMed]
  17. A. Galtarossa, L. Palmieri, A. Pizzinat, and L. Schenato, "Polarization properties of randomly-birefringent spun fibers," Opt. Fiber Technol. 12,205-216 (2006). [CrossRef]
  18. J. G. Ellison and A. S. Siddiqui, "Using polarimetric optical time domain reflectometry to extract spun fiber parameters," Proc. Inst. Electr. Eng.???Optoelectron. 148,176-182 (2001). [CrossRef]
  19. A. Galtarossa, L. Palmieri, and D. Sarchi, "Measure of spin period in randomly-birefringent low-PMD fibers," IEEE Photon. Technol. Lett. 16,1131-1133 (2004). [CrossRef]
  20. A. Galtarossa, J. Jung, J. Kim, B. H. Lee, K. Oh, U. C. Paek, L. Palmieri, A. Pizzinat, L. Schenato and C. G. Someda, "Low polarization mode dispersion measurements in ad hoc drawn spun fibers," Opt. Fiber Technol. 12,323-327 (2006). [CrossRef]
  21. M. N. Islam, C. DeWilde, and A. Kuditcher, "Wideband Raman amplifiers," in Raman Amplifiers for Telecommunications2: Sub-Systems and Systems, ed. Islam, M. N. (Springer, 2004), pp. 445-490.
  22. E. Bettini, A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, "Polarized Backward Raman Amplification in Unidirectionally Spun Fibers," IEEE Photon. Technol. Lett. 20,27-29 (2008). [CrossRef]
  23. Q. Lin and G. P. Agrawal, "Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers," J. Opt. Soc. Am. B 20, 1616-1631 (2003). [CrossRef]
  24. S. Sergeyev, S. Popov, and A. T. Friberg, "Modeling polarization-dependent gain in fiber Raman amplifiers with randomly varying birefringence," Opt. Commun. 262, 114-119 (2006). [CrossRef]
  25. S. Sergeyev, S. Popov, and A. T. Friberg, "Polarization dependent gain and gain fluctuations in a fiber Raman amplifier," J. Opt. A: Pure Appl. Opt. 9,1119-1122 (2007). [CrossRef]
  26. S. Popov, S. Sergeyev, and A. T. Friberg, "The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fiber???s circular symmetry," J. Opt. A: Pure Appl. Opt. 6, S72-S76 (2004). [CrossRef]
  27. H. Kazami, S. Matsushita, Y. Emori, T. Murase, M. Tsuyuki, K. Yamamoto, H. Matsuura, S. Namiki, and T. Shiba, "Development of a crystal-type depolarizer," Furakawa Review 23, 44-47 (2003).
  28. T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, T. Mizuochi, & K. Motoshima, "Efficient pump depolarizer analysis for distributed Raman amplifier with low polarization dependence of gain," J. Lightwave Technol. 24,3889-3896 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited