OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14397–14403

Superlens nano-patterning technology based on the distributed Polystyrene spheres

Shuhong Li, Chunlei Du, Xiaochun Dong, Lifang Shi, Xiangang Luo, Xingzhan Wei, and Yudong Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14397-14403 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on surface plasmon resonant enhancement, a method to realize photolithography beyond diffraction limit by using polystyrene spheres (PSs) self-assembled on silver slab was proposed in this paper. The optimum parameters for PS with different diameters were presented. In order to verify this method, numerical simulation on a typical configuration with 1.5µm diameter of PS was carried out by using the finite-difference time-domain (FDTD) method, and the minimum feature size of 88nm beyond diffraction limit at 365nm working wavelength was obtained.

© 2008 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 18, 2008
Revised Manuscript: August 16, 2008
Manuscript Accepted: August 16, 2008
Published: August 29, 2008

Shuhong Li, Chunlei Du, Xiaochun Dong, Lifang Shi, Xiangang Luo, Xingzhan Wei, and Yudong Zhang, "Superlens nano-patterning technology based on the distributed Polystyrene spheres," Opt. Express 16, 14397-14403 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994). [CrossRef]
  2. G. N. Phillips, M. Siekman, L. Abelmann, and J. C. Lodder, "High resolution magnetic force microscopy using focused ion beam modified tips," Appl. Phys. Lett. 81, 865 (2002). [CrossRef]
  3. K. Wilder, C. F. Quate, B. Singh, and D. F. Kyser, "Electron beam and scanning probe lithography: A comparison" Sci.Technol. B 16, 3864-3873 (1998). [CrossRef]
  4. R. Riehn, A. Charas, J. Morgado, and F. Cacialli, "Near-fieldoptical lithography of a conjugated polymer," Appl. Phys. Lett. 82, 526-528 (2003). [CrossRef]
  5. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  6. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 504 (1968). [CrossRef]
  7. D. A. Genov, M. Ambati, and X. Zhang, "Surface Plasmon Amplification in Planar Metal Films," IEEE J. Quantum Electron 43, 1104-1108 (2007). [CrossRef]
  8. J. B. Pendry and S. A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys. Condens. Matter 14, 8463-8479 (2002). [CrossRef]
  9. A. N. Lagarkov and V. N. Kissel, "Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate," Phys. Rev. Lett. 92, 077401 (2004). [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  11. X. Zhang and Z.W. Liu, "Superlenses to overcome the diffraction limit," Nature Mater. 7, 435-441 (2008). [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic Nanolithography," Nano Lett. 4, 1085-1088 (2004). [CrossRef]
  13. Y. D. Yin, Y. L. B. Gates, and Y. N. Xia, "Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures," J. Am. Chem. Soc. 123, 8718-8729 (2001). [CrossRef] [PubMed]
  14. B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003). [CrossRef]
  15. M. H. Wu, K. E. Paul, and G. M. Whitesides, "Patterning flood illumination with microlens arrays," Appl. Opt. 41, 2575-2585 (2002). [CrossRef] [PubMed]
  16. M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography," Appl. Phys. Lett. 78, 2273-2275 (2001). [CrossRef]
  17. Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001). [CrossRef]
  18. A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, "Nano-optics of surface plasmon polaritons," Phys. Reports 408, 131-314 (2005). [CrossRef]
  19. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005). [CrossRef]
  20. J. B. Pendry "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966-3969 (2000). [CrossRef] [PubMed]
  21. M. H. Wu, C. Park, and G. M. Whitesides, "Generation of submicrometer structures by photolithography using arrays of spherical microlenses," Colloid Interface Sci. 265, 304-309, (2003). [CrossRef]
  22. N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express. 11, 682-687 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited