OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14404–14410

Nanofabrication with controllable localization energy based on the interference modulation of surface plasmons

Xingzhan Wei, Chunlei Du, Xiaochun Dong, Xiangang Luo, Qiling Deng, and Yudong Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14404-14410 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nanolithography technique based on the interference of surface plasmons (SPs) is proposed and demonstrated to modulate the localized exposure energy. The SP waves participating in interference are excited by two distinct structures, namely, the grating and the nanotaper. Constructive or destructive interference, which ultimately causes an enhanced or reduced modulation to the localized energy, can be obtained merely by adjusting the distance of the grating and the taper. Detailedly speaking, the localized energy can be modulated consecutively with a constant periodicity, and the modulation range of energy is extremely wide, for instance, the maximum energy is nearly 3 orders of magnitude larger than the minimum by our FDTD simulation results. Moreover, since the localized electric field at the taper tip, which leads to the exposure of the photoresist, is extremely sensitive to interference, it suggests a potential way to produce patterns with different depths and critical widths in one chip via beforehand programming and reasonably controlling the corresponding interference of SPs.

© 2008 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 18, 2008
Revised Manuscript: August 14, 2008
Manuscript Accepted: August 15, 2008
Published: August 29, 2008

Xingzhan Wei, Chunlei Du, Xiaochun Dong, Xiangang Luo, Qiling Deng, and Yudong Zhang, "Nanofabrication with controllable localization energy based on the interference modulation of surface plasmons," Opt. Express 16, 14404-14410 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. V. Peski, "157 nm: deepest deep-ultraviolet yet," J. Vac. Sci. Technol. B 17, 3262-3266 (1999).
  2. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998). [CrossRef]
  3. J. P. Silverman, "Challenges and progress in x-ray lithography," J. Vac. Sci. Technol. B 16, 3137-3141 (1998). [CrossRef]
  4. M. A. McCord, "Electron beam lithography for 0.13 ?m manufacturing," J. Vac. Sci. Technol. B 15, 2125-2129 (1997). [CrossRef]
  5. J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993). [CrossRef]
  6. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography", J. Vac. Sci. Technol. B 17, 3306-3309 (1999). [CrossRef]
  7. M. Switkes and M. Rothschild, "Immersion lithography at 157 nm," J. Vac. Sci. Technol. B 19, 2353-2356 (2001). [CrossRef]
  8. J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002). [CrossRef]
  9. M. M.  Alkaisi, R. J.  Blaikie, S. J.  McNab, R.  Cheung, and D. R. S.  Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett.  75, 3560-3562 (1999). [CrossRef]
  10. H.  Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).
  11. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  12. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004). [CrossRef] [PubMed]
  13. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004). [CrossRef]
  14. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  15. A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  16. Q1. V.  Zayats, I. I.  Smolyaninov, and A. A.  Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep.  408, 131-314 (2005). [CrossRef]
  17. X. Wei, X. Luo, X. Dong and C. Du, "Localized surface plasmon nanolithography with ultrahigh resolution," Opt. Express. 15, 14177-14183 (2007). [CrossRef] [PubMed]
  18. J. A. Kong, Electromagnetic Wave Theory, 2nd edition (John Wiley & Sons, New York, 1990).
  19. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy", J. Microsc. 210, 220-224 (2003). [CrossRef] [PubMed]
  20. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett. 87, 167401-167404 (2001). [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  23. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited