OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14435–14447

Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14435-14447 (2008)

View Full Text Article

Acrobat PDF (906 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate continuous wave supercontinuum generation extending to the visible spectral region by pumping photonic crystal fibers at 1.07 μm with a 400 W single mode, continuous wave, ytterbium fiber laser. The continuum spans over 1300 nm with average powers up to 50 W and spectral power densities over 50 mW/nm. Numerical modeling and understanding of the physical mechanisms has led us to identify the dominant contribution to the short wavelength extension to be trapping and scattering of dispersive waves by high energy solitons.

© 2008 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Photonic Crystal Fibers

Original Manuscript: August 8, 2008
Revised Manuscript: August 26, 2008
Manuscript Accepted: August 28, 2008
Published: August 29, 2008

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003). [CrossRef]
  2. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003). [CrossRef]
  3. M. Gonzalez-Herraez, S. Mart?n-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003). [CrossRef]
  4. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706 (2004). [CrossRef]
  5. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended CW supercontinuum generation in a low water-loss Holey fiber," Opt. Lett. 30, 3132 (2005). [CrossRef]
  6. A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, "Broadband, low intensity noise CW source for OCT at 1800nm," Opt. Commun. 281, 154-156 (2008). [CrossRef]
  7. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008). [CrossRef]
  8. A. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005). [CrossRef]
  9. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005). [CrossRef]
  10. P. Beaud, W. Hodel, B. Zysset, and H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987). [CrossRef]
  11. A. V. Gorbach and D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007). [CrossRef]
  12. P. Persephonis, S. V. Chernikov, and J. R. Taylor, "Cascaded CW fibre Raman laser source 1.6-1.9 um," Electron. Lett. 32, 1486-1487 (1996). [CrossRef]
  13. M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys 39, 291-293 (2000). [CrossRef]
  14. S. V. Popov, J. R. Taylor, A. B. Rulkov, and V. P. Gapontsev, "Multi-watt, 1.48-2.05 um range CWRaman-soliton continuum generation in highly-nonlinear fibres," in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2004) paper CThEE4.
  15. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "Towards visible CW pumped supercontinua," Opt. Lett. doc. ID 97526 (posted 14 August 2008, in press).
  16. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005). [CrossRef]
  17. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). [CrossRef]
  18. J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schr¨odinger equation," Opt. Express 15, 16110-16123 (2007). [CrossRef]
  19. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-Pulse Propagation in Optical Fibers," Opt. Lett. 15, 1076-1078 (1990).
  20. D. Milam, "Review and Assessment of Measured Values of the Nonlinear Refractive-Index Coefficient of Fused Silica," Appl. Opt. 37, 546-550 (1998). [CrossRef]
  21. D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function," J. Opt. Soc. Am. B 19, 2886-2892 (2002). [CrossRef]
  22. K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  23. J. Lægsgaard, DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, ?rsteds Plads 345V, DK-2800 Kgs. Lyngby, Denmark, "Raman term in the nonlinear Schr¨odinger equation," (personal communication, 2008).
  24. J. Hult, "A Fourth-Order Runge-Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers," J. Lightwave Technol. 25, 3770-3775 (2007). [CrossRef]
  25. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  26. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005). [CrossRef]
  27. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007). [CrossRef]
  28. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell??s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
  29. V. P. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, "Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach," Opt. Lett. 20, 456-458 (1995).
  30. J. C. Travers, S. V. Popov, and J. R. Taylor, "A New Model for CW Supercontinuum Generation," in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.
  31. J. C. Travers, Femtosecond Optics Group, Physics Department, Prince Consort Road, Imperial College, London SW7 2AZ, UK, is preparing a manuscript to be called "Modelling the Initial Conditions of Continuous Wave Supercontinuum Generation."
  32. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). [CrossRef]
  33. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). [CrossRef]
  34. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006). [CrossRef]
  35. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. 16, 694-697 (1980). [CrossRef]
  36. K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986). [CrossRef]
  37. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294 (1985).
  38. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
  39. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1· 32 um," J. Mod. Opt. 35, 7-10 (1988). [CrossRef]
  40. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
  41. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003). [CrossRef]
  42. P. Wai, H. Chen, and Y. Lee, "Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990). [CrossRef]
  43. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef]
  44. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited