OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14476–14495

Femtosecond laser nano-ablation in fixed and non-fixed cultured cells

H. Niioka, N. I. Smith, K. Fujita, Y. Inouye, and S. Kawata  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14476-14495 (2008)
http://dx.doi.org/10.1364/OE.16.014476


View Full Text Article

Enhanced HTML    Acrobat PDF (2543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To understand the onset and morphology of femtosecond laser submicron ablation in cells and to study physical evidence of intracellular laser irradiation, we used transmission electron microscopy (TEM). The use of partial fixation before laser irradiation provides for clear images of sub-micron intracellular laser ablation, and we observed clear evidence of bubble-type physical changes induced by femtosecond laser irradiation at pulse energies as low as 0.48 nJ in the nucleus and cytoplasm. By taking ultrathin sliced sections, we reconstructed the laser affected subcellular region, and found it to be comparable to the point spread function of the laser irradiation. Laser-induced bubbles were observed to be confined by the surrounding intracellular structure, and bubbles were only observed with the use of partial pre-fixation. Without partial pre-fixation, laser irradiation of the nucleus was found to produce observable aggregation of nanoscale electron dense material, while irradiation of cytosolic regions produced swollen mitochondria but residual local physical effects were not observed. This was attributed to the rapid collapse of bubbles and/or the diffusion of any observable physical effects from the irradiation site following the laser exposure.

© 2008 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 6, 2008
Revised Manuscript: August 24, 2008
Manuscript Accepted: August 25, 2008
Published: September 2, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
H. Niioka, N. I. Smith, K. Fujita, Y. Inouye, and S. Kawata, "Femtosecond laser nano-ablation in fixed and non-fixed cultured cells," Opt. Express 16, 14476-14495 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14476


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Berns, "Optical Tweezers: Tethers, Wavelength, and Heart," Method. Cell Biol. 82, 457-466 (2006).
  2. K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000). [CrossRef] [PubMed]
  3. A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003). [CrossRef] [PubMed]
  4. K. König, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001). [CrossRef]
  5. N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, "Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses," Appl. Phys. Lett. 78, 999-1001 (2001).
  6. K. König, I. Riemann, P. Fischer, and K. -J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).
  7. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004), http://www.opticsexpress.org/abstract.cfm?id=81078. [CrossRef] [PubMed]
  8. M. W. Berns, Z. Wang, A. Dunn, V. Wallace, and V. Venugopalan, "Gene inactivation by multiphoton-targeted photochemistry," Proc. Natl. Acad. Sci. U. S. A. 97, 9504-9507 (2000). [CrossRef] [PubMed]
  9. E. A. Vitriol, A. C. Uetrecht, F. Shen, K. Jacobson, and J. E. Bear, "Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins," Natl. Acad. Sci. U. S. A. 104, 6702-6707 (2007). [CrossRef]
  10. U. K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002). [CrossRef] [PubMed]
  11. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006), http://www.opticsexpress.org/abstract.cfm?id=96194. [CrossRef] [PubMed]
  12. N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001). [CrossRef]
  13. N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Opt. Express 16, 8604-8616 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8604. [CrossRef] [PubMed]
  14. H. Hirase, V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton Stimulation of Neurons," J. Neurobiol. 51, 237-247 (2002). [CrossRef] [PubMed]
  15. G. McConnell and E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922-927 (2004). [CrossRef] [PubMed]
  16. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B-Lasers Opt. 81, 1015-1047 (2005). [CrossRef]
  17. M. Tobioka and J. J. Biesele, "Mitochondria in Living Cells: An Analysis of Movements," J. Biophys. Biochem. Cytol. 2, 319-324 (1956). [CrossRef] [PubMed]
  18. A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina," Invest. Ophthalmol. Vis. Sci. 35, 3032-3044 (1994). [PubMed]
  19. A. Hopt and E. Neher, "Highly Nonlinear Photodamage in Two-Photon Fluorescence Microscopy," Biophys. J. 80, 2029-2036 (2001). [CrossRef] [PubMed]
  20. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999). [CrossRef] [PubMed]
  21. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor," Mech. Chem. Biosyst. 2, 17-25 (2005).
  22. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. -J. Halbhuber, "Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death," Exp. Cell Res. 263, 88-97 (2001). [CrossRef] [PubMed]
  23. S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Opt. Express 14, 717-725 (2006), http://www.opticsexpress.org/abstract.cfm?id=87569. [CrossRef] [PubMed]
  24. J. A. Galbraith and M. Terasaki, "Controlled Damage in Thick Specimens by Multiphoton Excitation," Mol. Biol. Cell 14, 1808-1817 (2003). [CrossRef] [PubMed]
  25. V. Kohli, A. Y. Elezzabi, and J. P. Acker, "Cell Nanosurgery using Ultrashort (Femtosecond) Laser Pulses: Applications to Membrane Surgery and Cell Isolation," Lasers Surg. Med. 37, 227-230 (2005). [CrossRef] [PubMed]
  26. A. Khodjakov, R. W. Cole, and C. L. Rieder, "A Synergy of Technologies: Combining Laser Microsurgery With Green Fluorescent Protein Tagging," Cell Motil. Cytoskeleton 38, 311-317 (1997). [CrossRef] [PubMed]
  27. A. Khodjakov, R. W. Cole, B. F. McEwen, K. F. Buttle, and C. L. Rieder, "Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator," J. Cell Biol. 136, 229-240 (1997). [CrossRef] [PubMed]
  28. A. Khodjakov, C. Rieder, C. A. Mannella, and K. W. Kinnally, "Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells?," Mitochondrion 3, 217-227 (2004). [CrossRef]
  29. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery," Phys. Rev. Lett. 100, 038102 (2008). [CrossRef] [PubMed]
  30. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-3-196. [PubMed]
  31. B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. D. Miller "Effects of Femtosecond Laser Irradiation on Osseous Tissues," Lasers Surg. Med. 39, 273-285 (2007). [CrossRef] [PubMed]
  32. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005), http://www.opticsexpress.org/abstract.cfm?id=83815. [CrossRef] [PubMed]
  33. E. L. Botvinick, V. Venugopalan, J. V. Shah, L. H. Liaw, and M. W. Berns, "Controlled Ablation of Microtubules Using a Picosecond Laser," Biophys. J. 87, 4203-4212 (2004). [CrossRef] [PubMed]
  34. P. E. Hanninen and S. W. Hell, "Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope," Bioimaging 2, 117-122 (1994). [CrossRef]
  35. S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-Dependent Photogeneration of Calcium Waves in HeLa Cells," Cell Biochem. Biophys. 45, 167-176 (2006). [CrossRef] [PubMed]
  36. H. Kushida, "A Study of Cellular Swelling and Shrinkage during Fixation, Dehydration and Embedding in Various Standard Media," J. Electron Microsc. 11, 135-138 (1962).
  37. T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, "Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator," Opt. Express 24, 9869-9880 (2005), http://www.opticsexpress.org/abstract.cfm?uri=OE-13-24-9869. [CrossRef]
  38. N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 77, 237-242 (2003).
  39. K. Venkatakrishnan, B. Tan, P. Stanley, and N. R. Sivakumar, "The effect of polarization on ultrashort pulsed laser ablation of thin metal films," Appl. Phys. Lett. 92, 1604-1607 (2002).
  40. M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 3rd ed. (The Macmillian Press ltd, Hampshire, 1989).
  41. C. H. Fan, J. Sun, and J. P. Longtin, "Breakdown threshold and localized electron density in water induced by ultrashort laser pulses," J. Appl. Phys. 91, 2530-2536 (2002). [CrossRef]
  42. S. S. Mao, F. Qu???er???e, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, "Dynamics of femtosecond laser interactions with dielectrics," Appl. Phys. A 79, 1695-1709 (2004). [CrossRef]
  43. M. S. Hutson and X. Ma, "Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007). [CrossRef] [PubMed]
  44. E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006). [CrossRef]
  45. H. Oehring, I. Riemann, P. Fischer, K. -J. Halbhuber, and K. König, "Ultrastructure and Reproduction Behaviour of Single CHO-K1 Cells Exposed to Near Infrared Femtosecond Laser Pulses," Scanning 22, 263-270 (2000). [CrossRef] [PubMed]
  46. R. Olinski, Z. Nackerdien, and M Dizdaroglu, "DNA-Protein Cross-Linking between Thymine and Tyrosine in Chromatin of ?-Irradiated or H2O2-Treated Cultured Human Cells," Arch. Biochem. Biophys. 297, 139-143 (1992). [CrossRef] [PubMed]
  47. J. V. Harper, P. Reynolds, E. L. Leatherbarrow, S. W. Botchway, A. W. Parker, and P. O???Neill, "Induction of Persistent Double Strand Breaks Following Multi-photon Irradiation of Cycling and G1-arrested Mammalian Cells: Replication-induced Double Strand Breaks," Photochem. Photobiol. (to be published). [PubMed]
  48. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998). [CrossRef]
  49. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. SmallIV, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-809 (1996). [CrossRef]
  50. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, "Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells," Opt. Express 15, 10303-10317 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10303. [CrossRef] [PubMed]
  51. A. Schönle and S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-5-325. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited