OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14512–14523

Distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment

Han Chuen Lim, Akio Yoshizawa, Hidemi Tsuchida, and Kazuro Kikuchi  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14512-14523 (2008)
http://dx.doi.org/10.1364/OE.16.014512


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: June 13, 2008
Revised Manuscript: August 18, 2008
Manuscript Accepted: August 20, 2008
Published: September 2, 2008

Citation
Han Chuen Lim, Akio Yoshizawa, Hidemi Tsuchida, and Kazuro Kikuchi, "Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment," Opt. Express 16, 14512-14523 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Scarani and N. Gisin, "Quantum key distribution between N partners: Optimal eavesdropping and Bell???s inequalities," Phys. Rev. A 65, 012311 (2001). [CrossRef]
  2. M. Hillery, V. Buzek, and A. Berthiaume, "Quantum secret sharing," Phys. Rev. A 59, 1829-1834 (1999). [CrossRef]
  3. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999). [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  6. M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998). [CrossRef]
  7. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001). [CrossRef] [PubMed]
  8. H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  9. R. J Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "Improved fidelity of triggered entangled photons from single quantum dots," New J. Phys. 8, 29 (2006). [CrossRef]
  10. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006). [CrossRef] [PubMed]
  11. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment," Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).
  12. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007). [CrossRef] [PubMed]
  13. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007). [CrossRef] [PubMed]
  14. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, "Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors," Opt. Express 16, 5776-5781 (2008). [CrossRef] [PubMed]
  15. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969). [CrossRef]
  16. V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, "Four-photon correction in two-photon Bell experiments," Eur. Phys. J. D 32, 129-138 (2005). [CrossRef]
  17. X. Ma, C.-H. F. Fung, and H.-K. Lo, "Quantum key distribution with entangled photon sources," Phys. Rev. A 76, 012307 (2007). [CrossRef]
  18. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003). [CrossRef]
  19. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell???s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  20. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  21. S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007). [CrossRef]
  22. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide," Opt. Express 16, 12460-12468 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12460. [CrossRef] [PubMed]
  23. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled-photons," Phys. Rev. A 60, R773-R776 (1999). [CrossRef]
  24. J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, "Active polarization stabilization in optical fibers suitable for quantum key distribution," Opt. Express 15, 17928-17936 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17928. [CrossRef] [PubMed]
  25. G. B. Xavier, G. Vilela de Faria, G. P. Temporao, and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16, 1867-1873 (2008). [CrossRef] [PubMed]
  26. A. Yoshizawa and H. Tsuchida, "A 1550 nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode," Jpn. J. Appl. Phys. 40, 200-201 (2001). [CrossRef]
  27. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001). [CrossRef]
  28. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 ?m by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004). [CrossRef] [PubMed]
  29. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005). [CrossRef] [PubMed]
  30. H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, "Efficient and low-loss single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides," Opt. Lett. 33, 639-641 (2008). [CrossRef] [PubMed]
  31. G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001). [CrossRef]
  32. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol'tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002). [CrossRef]
  33. P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Opt. 45, 595-604 (1998). [CrossRef]
  34. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).
  35. Y. Luo and K. T. Chan, "Quantum cryptography with entangled multiphotons of the same polarization," Phys. Rev. A 70, 042302 (2004). [CrossRef]
  36. O. Kuzucu and F. N. C. Wong, "Pulsed Sagnac source of narrow-band polarization-entangled photons," Phys. Rev. A 77, 032314 (2008). [CrossRef]
  37. H. Takesue and K. Shimizu, submitted to J. Mod. Opt.
  38. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-key-distribution systems using 1.55-?m up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005). [CrossRef]
  39. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001). [CrossRef]
  40. H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, "Long-distance entanglement swapping with photons from separated sources," Phys. Rev. A 71, 050302(R) (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited