OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14675–14682

The Berry phase and the Aharonov-Bohm effect on optical activity

C. Z. Tan  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14675-14682 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The helical crystal structure in optically active media acts as the natural micro-solenoids for the electromagnetic waves passing through them, producing the longitudinal magnetic field in the direction of the axis of helices. Magnetic flux through the helical structure is quantized. The Berry phase is induced by rotation of the electrons around the helical structure. Optical rotation is related to the difference in the accumulative Berry phase between the right-, and the left-circularly polarized waves, which is proportional to the magnetic flux through the helical structure, according to the Aharonov-Bohm effect. The optical activity is the natural Faraday effect and the natural Aharonov-Bohm effect.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.5430) Physical optics : Polarization
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: July 10, 2008
Revised Manuscript: August 13, 2008
Manuscript Accepted: August 13, 2008
Published: September 3, 2008

C. Z. Tan, "The Berry phase and the Aharonov-Bohm effect on optical activity," Opt. Express 16, 14675-14682 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hecht, Optics (Addison Wesley, New York, 2002).
  2. E. U. Condon, "Theories of optical rotatory power," Rev. Mod. Phys. 9, 432-457 (1937). [CrossRef]
  3. C. Z. Tan, "Quantum magnetic flux through helical molecules in optically active media," Appl. Phys. B 82, 633-636 (2006). [CrossRef]
  4. C. Z. Tan and L. Chen, "Quantum effects in the optical activity of ?-quartz," Opt. Lett. 32, 2936-2938 (2007). [CrossRef] [PubMed]
  5. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond. A 392, 45-57 (1984). [CrossRef]
  6. Y. Aharonov and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. Rev. 115, 485-491 (1959). [CrossRef]
  7. B. S. Deaver, Jr., and W. M. Fairbank, "Experimental evidence for quantized flux in superconducting cylinders," Phys. Rev. Lett. 7, 43-46 (1961). [CrossRef]
  8. R. Doll and M. Näbauer, "Experimental proof of magnetic flux quantization in a superconducting ring," Phys. Rev. Lett. 7, 51-52 (1961). [CrossRef]
  9. W. L. Goodman and B. S. Deaver, Jr., "Detailed measurements of the quantized flux states of hollow superconducting cylinders," Phys. Rev. Lett. 24, 870-873 (1970). [CrossRef]
  10. D. Yu. Sharvin and Yu. V. Sharvin, "Magnetic-flux quantization in cylindrical film of a normal metal," JETP Lett. 34, 272-275 (1981).
  11. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, "Observation of h/e Aharonov-Bohm oscillations in normal-metal rings," Phys. Rev. Lett. 54, 2696-2699 (1985). [CrossRef] [PubMed]
  12. A. D. Stone and Y. Imry, "Periodicity of the Aharonov-Bohm effect in normal-metal rings," Phys. Rev. Lett. 56, 189-192 (1986). [CrossRef] [PubMed]
  13. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999).
  14. F. Plastina, G. Liberti, and A. Carollo, "Scaling of Berry???s phase close to the Dicke quantum phase transition," Europhys. Lett. 76, 182-188 (2006). [CrossRef]
  15. M. P. Silverman, More Than One Mystery, Explorations in Quantum Interference (Springer-Verlag, Berlin, 1995). [CrossRef]
  16. P. Van Den Keybus and W. Grevendonk, "Comparison of optical activity and Faraday rotation in crystalline SiO2," Phys. Status Solidi B 136, 651-659 (1986). [CrossRef]
  17. J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, "Ultraviolet optical isolators utilizing KDP-isomorphs," Opt. Comm. 80, 115-118 (1990). [CrossRef]
  18. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials A Handbook (John Wiley & Sons, New York, 1997).
  19. C. Z. Tan, "Piezoelectric lattice vibrations at optical frequencies," Solid State Commun. 131, 405-408 (2004). [CrossRef]
  20. C. Z. Tan, H. Li, and L. Chen, "Generation of mutual coherence of eigenvibrations in ?-quartz at infrared frequencies by incidence of randomly polarized waves," Appl. Phys. B 86, 129-137 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited