OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14689–14702

Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection

Aleksandra Foltynowicz, Weiguang Ma, and Ove Axner  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14689-14702 (2008)
http://dx.doi.org/10.1364/OE.16.014689


View Full Text Article

Enhanced HTML    Acrobat PDF (8686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The potential of fiber-laser-based sub-Doppler noise-immune cavity-enhanced optical heterodyne molecular spectrometry for trace gas detection is scrutinized. The non-linear dependence of the on-resonance sub-Doppler dispersion signal on the intracavity pressure and power is investigated and the optimum conditions with respect to these are determined. The linearity of the signal strength with concentration is demonstrated and the dynamic range of the technique is discussed. Measurements were performed on C2H2 at 1531 nm up to degrees of saturation of 100. The minimum detectable sub-Doppler optical phase shift was 5 × 10-11 cm-1 Hz-1/2, corresponding to a partial pressure of C2H2 of 1 × 10-12 atm for an intracavity pressure of 20 mTorr, and a concentration of 10 ppb at 400 mTorr.

© 2008 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Spectroscopy

History
Original Manuscript: July 8, 2008
Revised Manuscript: August 24, 2008
Manuscript Accepted: August 30, 2008
Published: September 3, 2008

Citation
Aleksandra Foltynowicz, Weiguang Ma, and Ove Axner, "Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection," Opt. Express 16, 14689-14702 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14689


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Fried and D. Richter, "Infrared absorption spectroscopy," in Analytical Techniques for Atmospheric Measurements, D. Heard, eds. (Blackwell Publishing, 2006), pp. 72-146.
  2. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005). [CrossRef]
  3. Y. He and B. J. Orr, "Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity," Appl. Phys. B 85, 355-364 (2006). [CrossRef]
  4. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).
  5. M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997). [CrossRef]
  6. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005). [CrossRef]
  7. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, "Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 ?m by means of a distributed feedback quantum cascade laser," Opt. Lett. 31, 3040-3042 (2006). [CrossRef] [PubMed]
  8. M. Delabachelerie, K. Nakagawa, and M. Ohtsu, "Ultranarrow 13C2H2 Saturated-Absorption Lines at 1.5 ?m," Opt. Lett. 19, 840-842 (1994). [CrossRef]
  9. G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000). [CrossRef]
  10. K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006). [CrossRef]
  11. D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999). [CrossRef]
  12. J. Hald, J. C. Petersen, and J. Henningsen, "Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers," Phys. Rev. Lett. 98, (2007). [CrossRef] [PubMed]
  13. A. M. Cubillas, J. Hald, and J. C. Petersen, "High resolution spectroscopy of ammonia in a hollow-core fiber," Opt. Express 16, 3976-3985 (2008). [CrossRef] [PubMed]
  14. J. Henningsen and J. Hald, "Dynamics of gas flow in hollow core photonic bandgap fibers," Appl. Opt. 47, 2790-2797 (2008). [CrossRef] [PubMed]
  15. J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  16. J. Ye and J. L. Hall, "Absorption detection at the quantum limit: Probing high-finesse cavities with modulation techniques," in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic Press, 2002), pp. 83-127.
  17. J. Ye and T. W. Lynn, "Applications of optical cavities in modern atomic, molecular, and optical physics," in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, 2003), pp. 1-83.
  18. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential," Appl. Phys. B DOI: 10.1007/s00340-00008-03126-z (2008).
  19. J. Ye, L. S. Ma, and J. L. Hall, "Sub-Doppler optical frequency reference at 1.064 ?m by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition," Opt. Lett. 21, 1000-1002 (1996). [CrossRef] [PubMed]
  20. J. Ye, Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards, PhD Thesis (University of Colorado, 1997).
  21. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999). [CrossRef]
  22. L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999). [CrossRef]
  23. N. J. van Leeuwen, and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004). [CrossRef]
  24. J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006). [CrossRef] [PubMed]
  25. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," J. Opt. Soc. Am. B 24, 1392-1405 (2007). [CrossRef]
  26. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, "Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability," Opt. Express 15, 10822-10831 (2007). [CrossRef] [PubMed]
  27. C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 ?m tunable diode laser," Jpn. J. Appl. Phys.  38, 920-922 (1999). [CrossRef]
  28. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004). [CrossRef]
  29. O. Axner, W. Ma, and A. Foltynowicz, "Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised," J. Opt. Soc. Am. B 25, 1166-1177 (2008). [CrossRef]
  30. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, "Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions," J. Opt. Soc. Am. B 25, 1156-1165 (2008). [CrossRef]
  31. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001). [CrossRef]
  32. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  33. R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984). [CrossRef]
  34. HITRAN2004 Database (Version 12.0).
  35. W. Ma, A. Foltynowicz, and O. Axner, "Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions," J. Opt. Soc. Am. B 25, 1144-1155 (2008). [CrossRef]
  36. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983). [CrossRef]
  37. P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993). [CrossRef]
  38. N. C. Wong and J. L. Hall, "Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection," J. Opt. Soc. Am. B 2, 1527 (1985). [CrossRef]
  39. G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited