OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14723–14730

Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber

Adam M. Larson and Alvin T. Yeh  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14723-14730 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband, sub-10-fs pulses, can be propagated through polarization-maintaining single mode fiber (PMF) for use in nonlinear optical microscopy (NLOM). We demonstrate delivery of near transform-limited, 1 nJ pulses from a Ti:Al2O3 (75 MHz repetition rate) oscillator via PMF to the NLOM focal plane while maintaining 120 nm of bandwidth. Negative group delay dispersion (GDD) introduced to pre-compensate normal dispersion of the optical fiber and microscope optics ensured linear pulse propagation through the PMF. The minimized time-bandwidth product of the laser pulses at the NLOM focus allowed the nonlinear excitation of multiple fluorophores simultaneously without central wavelength tuning. Polarization sensitive NLOM imaging using second harmonic generation in collagen was demonstrated using PMF delivered pulses. Two-photon excited fluorescence spectra and second harmonic images taken with and without the fiber indicates that the fiber based system is capable of generating optical signals that are within a factor of two to three of our traditional NLOM.

© 2008 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: May 14, 2008
Revised Manuscript: August 19, 2008
Manuscript Accepted: August 21, 2008
Published: September 4, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Adam M. Larson and Alvin T. Yeh, "Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber," Opt. Express 16, 14723-14730 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008). [CrossRef] [PubMed]
  2. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005). [CrossRef] [PubMed]
  3. L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226, 195-206 (2007). [CrossRef] [PubMed]
  4. F. Helmchen, D. W. Tank, and W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002). [CrossRef] [PubMed]
  5. S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express 12, 6122-6128 (2004). [CrossRef] [PubMed]
  6. M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005). [CrossRef] [PubMed]
  7. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005). [CrossRef] [PubMed]
  8. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001). [CrossRef] [PubMed]
  9. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004). [CrossRef] [PubMed]
  10. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008). [CrossRef] [PubMed]
  11. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005). [CrossRef] [PubMed]
  12. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirrors," Opt. Express 14, 1027-1032 (2006). [CrossRef] [PubMed]
  13. M. T. Myaing, D. J. MacDonald, and X. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006). [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Acadmic Press, San Diego, 2007).
  15. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002). [CrossRef]
  16. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005). [CrossRef] [PubMed]
  17. S. W. Clark, F. O. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001). [CrossRef]
  18. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, "Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses," Opt. Lett. 29, 2602-2604 (2004). [CrossRef] [PubMed]
  19. M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, and F. Lacombe, "Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope," Opt. Express 15, 10154-10162 (2007). [CrossRef] [PubMed]
  20. B. Rozsa, G. Katona, E. S. Vizi, Z. Varallyay, A. Saghy, L. Valenta, P. Maak, J. Fekete, A. Banyasz, and R. Szipocs, "Random access three-dimensional two-photon microscopy," Appl. Opt. 46, 1860-1865 (2007). [CrossRef] [PubMed]
  21. W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004). [CrossRef] [PubMed]
  22. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997). [CrossRef]
  23. A. M. Larson and A. T. Yeh, "Ex vivo characterization of sub-10-fs pulses," Opt. Lett. 31, 1681-1683 (2006). [CrossRef] [PubMed]
  24. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998). [CrossRef]
  25. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, "Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control," Opt. Lett. 30, 911-913 (2005). [CrossRef] [PubMed]
  26. D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A. 60, 1287-1292 (1999). [CrossRef]
  27. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002). [CrossRef]
  28. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited