OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14746–14760

Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography

Stanley H. Chan, Alfred K. Wong, and Edmund Y. Lam  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14746-14760 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (871 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The continuous shrinkage of minimum feature size in integrated circuit (IC) fabrication incurs more and more serious distortion in the optical projection lithography process, generating circuit patterns that deviate significantly from the desired ones. Conventional resolution enhancement techniques (RETs) are facing critical challenges in compensating such increasingly severe distortion. In this paper, we adopt the approach of inverse lithography in the mask design, which is a branch of design methodology to treat it as an inverse mathematical problem. We focus on using pixel-based algorithms to design alternating phase-shifting masks with minimally distorted output, with the goal that the patterns generated should have high contrast and low dose sensitivity. This is achieved with a dynamic-programming-based initialization scheme to pre-assign phases to the layout when alternating phase-shifting masks are used. Pattern fidelity and worst case slopes are shown to improve with this initialization scheme, which are important for robustness considerations.

© 2008 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(100.3190) Image processing : Inverse problems
(110.5220) Imaging systems : Photolithography

ToC Category:
Image Processing

Original Manuscript: June 3, 2008
Revised Manuscript: August 7, 2008
Manuscript Accepted: August 30, 2008
Published: September 4, 2008

Stanley H. Chan, Alfred K. Wong, and Edmund Y. Lam, "Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography," Opt. Express 16, 14746-14760 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Plummer, M. Deal, and P. Griffin, Silicon VLSI Technology ??? Fundamentals, Practice and Modeling (Prentice Hall, 2000).
  2. C. A. Mack, "30 years of lithography simulation," Proc. SPIE 5754, 1-12 (2004). [CrossRef]
  3. F. Schellenberg, "Resolution enhancement technology: The past, the present, and extensions for the future," Proc. SPIE 5377, 1-20 (2004). [CrossRef]
  4. A. K.-K. Wong, Resolution enhancement techniques in optical lithography (SPIE Press, Bellingham, Washington, 2001). [CrossRef]
  5. K. Nashold and B. Saleh, "Image construction through diffraction-limited high-contrast imaging systems: An iterative approach," J. Opt. Soc. Am. A 2, 635-643 (1985). [CrossRef]
  6. B. Saleh and S. Sayegh, "Reductions of errors of microphotographic reproductions by optical corrections of original masks," Opt. Eng. 20, 781-784 (1981).
  7. S. Sherif, B. Saleh, and R. Leone, "Binary image synthesis using mixed linear integer programming," IEEE Trans. Image Process. 4, 1252-1257 (1995). [CrossRef] [PubMed]
  8. Y. Liu and A. Zakhor, "Binary and phase-shifting image design for optical lithography," IEEE Trans. Semicond. Manuf. 5, 138-151 (1992). [CrossRef]
  9. Y. Liu and A. Zakhor, "Optimal binary image design for optical lithography," Proc. SPIE 1264, 410-412 (1990).
  10. N. Cobb and A. Zakhor, "Fast sparse aerial image calculation for OPC," Proc. SPIE 2621, 534-545 (1995). [CrossRef]
  11. Y. C. Pati and T. Kailath, "Phase-shifting masks for microlithography automated design and mask requirements," J. Opt. Soc. Am. A 11, 2438-2452 (1994). [CrossRef]
  12. D. S. Abrams and L. Pang, "Fast inverse lithography technology," Proc. SPIE 6154, 534-542 (2006).
  13. C. Hung, B. Zhang, E. Guo, L. Pang, Y. Liu, K. Wang, and G. Dai, "Pushing the lithography limit: Applying inverse lithography technology (ILT) at the 65nm generation," Proc. SPIE 6154, 61541M (2006). [CrossRef]
  14. L. Pang, Y. Liu, and D. Abrams, "Inverse lithography technology (ILT): What is the impact to the photomask industry?" Proc. SPIE 6283, 62830X (2006). [CrossRef]
  15. A. Poonawala and P. Milanfar, "Prewarping techniques in imaging: Applications in nanotechnology and biotechnology," Proc. SPIE 5674, 114-127 (2005). [CrossRef]
  16. A. Poonawala and P. Milanfar, "OPC and PSM design using inverse lithography: A nonlinear optimization approach," Proc. SPIE 6154, 61543H (2006). [CrossRef]
  17. S. H. Chan, A. K. Wong, and E. Y. Lam, "Inverse synthesis of phase-shifting mask for optical lithography," in "OSA Topical Meeting in Signal Recovery and Synthesis," (2007), p. SMD3.
  18. X. Ma and G. R. Arce, "Generalized inverse lithography methods for phase-shifting mask design," Opt. Express 15, 15066-15079 (2007). [CrossRef] [PubMed]
  19. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  20. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publisher, Englewood, Colo, 2005), 3rd ed.
  21. Y. Granik, "Solving inverse problems of optimal microlithography," Proc. SPIE 5754, 506-526 (2004). [CrossRef]
  22. A. Poonawala and P. Milanfar, "Mask design for optical microlithography ???an inverse imaging problem," IEEE Trans. Image Process. 16, 774-788 (2007). [CrossRef] [PubMed]
  23. S. H. Chan and E. Y. Lam, "Inverse image problem of designing phase shifting masks in optical lithography," in "IEEE International Conference on Image Processing," (2008).
  24. P. E. Gill, W. Murray, and M. H. Wright, Practical optimization (Academic Press, London, 1986).
  25. W. Rudin, Principles of Mathematical Analysis (McGraw-Hill, 1976).
  26. M. Minoux, Mathematical programming theory and algorithms (John Wiley and Sons, Chichester, 1986).
  27. P. Berman, A. Kahng, D. Vidhani, H. Wang, and A. Zelikovsky, "Optimal phase conflict removal for layout of dark field alternating phase shifting masks," IEEE Trans.Comput.-Aided Des. 19, 175-187 (2000). [CrossRef]
  28. A. Moniwa and T. Terasawa, "Heuristic method for phase-conflict minimization in automatic phase-shift mask design," Jpn. J. Appl. Phys. 34, 6584-6589 (1995). [CrossRef]
  29. L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice Hall, 2001).
  30. D. Halliday, R. Resnick, and K. S. Krane, Physics, (John Wiley and Sons, New York, 2002), 2nd ed., Vol. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited