OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14801–14811

Adiabatic self-tuning in a silicon microdisk optical resonator

Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14801-14811 (2008)
http://dx.doi.org/10.1364/OE.16.014801


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method for adiabatically self-tuning a silicon microdisk resonator. This mechanism is not only able to sensitively probe the fast nonlinear cavity dynamics, but also provides various optical functionalities like pulse compression, shaping, and tunable time delay.

© 2008 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.5750) Optical devices : Resonators
(320.5550) Ultrafast optics : Pulses
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 11, 2008
Revised Manuscript: September 1, 2008
Manuscript Accepted: September 1, 2008
Published: September 4, 2008

Citation
Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter, "Adiabatic self-tuning in a silicon microdisk optical resonator," Opt. Express 16, 14801-14811 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003). [CrossRef] [PubMed]
  2. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  3. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006). [CrossRef]
  4. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006). [CrossRef] [PubMed]
  5. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006). [CrossRef] [PubMed]
  6. S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007). [CrossRef]
  7. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, "Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity," Opt. Express 15, 11472-11480 (2007). [CrossRef] [PubMed]
  8. P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008). [CrossRef] [PubMed]
  9. A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006). [CrossRef] [PubMed]
  10. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  11. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007). [CrossRef]
  12. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef] [PubMed]
  13. M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Encapsulation layers for low-loss silicon photonics," Appl. Phys. Lett. 91, 131117 (2007). [CrossRef]
  14. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  15. T. J. Johnson, M. Borselli, and O. J. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006). [CrossRef] [PubMed]
  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Mode coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002). [CrossRef]
  17. The intrnsic Q factor is referred to that originated from the intrnisic loss of the microdisk, while the loaded one is referred to that for the microdisk loaded with the coupling fiber taper. See Ref. [14].
  18. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
  19. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  20. R.W. Boyd and D. J. Gauthier, "Slow and fast light," in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002).
  21. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparant media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  22. E. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and mode locking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007). [CrossRef] [PubMed]
  23. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  24. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited