OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14812–14820

Manipulating full photonic band gap in two dimensional birefringent photonic crystals

Remo Proietti Zaccaria, Prabhat Verma, Satoshi Kawaguchi, Satoru Shoji, and Satoshi Kawata  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14812-14820 (2008)
http://dx.doi.org/10.1364/OE.16.014812


View Full Text Article

Enhanced HTML    Acrobat PDF (1415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The probability to realize a full photonic band gap in two-dimensional birefringent photonic crystals can be readily manipulated by introducing symmetry reduction or air holes in the crystal elements. The results lie in either creation of new band gaps or enlargement of existing band gaps. In particular, a combination of the two processes produces an effect much stronger than a simple summation of their individual contributions. Materials with both relatively low refractive index (rutile) and high refractive index (tellurium) were considered. The combined effect of introduction of symmetry reduction and air holes resulted in a maximum enlargement of the band gaps by 8.4% and 20.2%, respectively, for the two materials.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: June 2, 2008
Revised Manuscript: July 10, 2008
Manuscript Accepted: August 21, 2008
Published: September 4, 2008

Citation
Remo Proietti Zaccaria, Prabhat Verma, Satoshi Kawaguchi, Satoru Shoji, and Satoshi Kawata, "Manipulating full photonic band gaps in two dimensional birefringent photonic crystals," Opt. Express 16, 14812-14820 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14812


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, "Control of Light Emission by 3D Photonic Crystals," Science 305, 227-229 (2004). [CrossRef] [PubMed]
  2. S. A. Rinnie, F. G. Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three dimensional silicon photonic crystal," Nat. Photonics 8, 52 (2008). [CrossRef]
  3. J. C. Knight, "Photonic crystal fibres," Nature (London) 424, 6950 (2003). [CrossRef]
  4. S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytik¨ainen, J. D. Love, and V. Steblina, "A fractal-based fibre for ultra-high throughput optical probes," Opt. Express 15, 2468 (2007). [CrossRef] [PubMed]
  5. Y. Akahane, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003), [CrossRef]
  6. H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two dimensional hetero photonic crystal," Opt. Express 14, 3491 (2006). [CrossRef] [PubMed]
  7. D. L. Bullock, C. Shih, and R. S. Marguilies, "Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control," J. Opt. Soc. Am. B 10, 399 (1993). [CrossRef]
  8. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, "Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 87, 061107 (2005).
  9. D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134 (1996). [CrossRef]
  10. Z. Y. Li, B. Y. Gu, and G. Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574 (1998). [CrossRef]
  11. S. W. Wang, W. Lu, X. S. Chen, M. Zhou, and X. C. Shen, "Photonic band gap in two-dimensional anisotropic photonic crystal with rectangular bars," Int. J. Infrared Millim. Waves 24, 963 (2003).
  12. C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 40, 2949 (1996). [CrossRef]
  13. T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, and R. Alcubilla, "Effects of symmetry reduction in twodimensional square and triangular lattices," Phys. Rev. B 69, 235112 (2004). [CrossRef]
  14. N. Malkova, S. Kim, T. Dilazaro, and V. Gopalon, "Symmetrical analysis of complex two-dimensional hexagonal photonic crystals," Phys. Rev. B 67, 125203 (2003). [CrossRef]
  15. K. P. Chang and S. L. Yang, "Photonic band gap of two-dimensional triangular photonic crystals with broken structural and rotational symmetries," J. Appl. Phys. 100, 073104 (2006). [CrossRef]
  16. T. Pan and Z. Y. Li, "The effect of etching interfacial layers on the absolute photonic band gap in two-dimensional photonic crystals," Solid State Commun. 128, 187 (2003). [CrossRef]
  17. T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, "Analysis of photonic band gap in twodimensional photonic crystals with rods covered by a thin interfacial layer," Phys. Rev. B 70, 195108 (2004). [CrossRef]
  18. T. Pan, F. Zhuang, and Z. Y. Li, "Absolute photonic band gaps in a two-dimensional photonic crystal with hollow anisotropic rods," Sol. State Comm. 129, 501 (2004). [CrossRef]
  19. B. Rezaei and M. Klafi, "Engineering absolute band gap in anisotropic hexagonal photonic crystals," Opt. Commun. 266, 159 (2006). [CrossRef]
  20. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic Press, Inc., 1991).
  21. Y. Yamada, H. Uyama, S. Watanabe, and H. Nozoye, "Deposition at low substrate temperatures of high-quality TiO2 films by radical beam-assisted evaporation," Appl. Opt. 38, 6638 (1999). [CrossRef]
  22. K. Sakoda, ed., Optical Properties of Photonic Crystals (Springer, 2001).
  23. In fact, it is more appropriate to talk about Crystal Systems instead of Bravais Lattices. Indeed, the symmetry level of a lattice with translational invariance is dictated by the corresponding crystal system. However we have chosen to use the Bravais lattice terminology to avoid confusion in the text. Besides, this approximation can work well if we consider that the fourteen Bravais lattices are intimately related to the seven crystal systems that are defined in three dimensions.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited