OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14902–14909

Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides

Jing Chen, Gennady A. Smolyakov, Steven R. J. Brueck, and Kevin J. Malloy  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14902-14909 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The numerical analysis of finite planar metal-insulator-metal waveguide structures using the transfer-matrix formalism reveals both bound and leaky surface plasmon (SP) modes. The dispersion relations, propagation lengths and confinement factors of these SP modes are presented. The highest energy SP mode consists of non-radiative (bound) and radiative (leaky) portions separated by a spectral gap. The leaky regime is further divided into antenna and reactive mode regions. The antenna mode may be used for both free-space coupling and beam steering devices.

© 2008 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 30, 2008
Revised Manuscript: August 29, 2008
Manuscript Accepted: September 2, 2008
Published: September 8, 2008

Jing Chen, Gennady A. Smolyakov, Steven R. Brueck, and Kevin J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express 16, 14902-14909 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, "Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates," Appl. Phys. Lett. 84, 852-854 (2004). [CrossRef]
  2. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977. [CrossRef] [PubMed]
  3. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  4. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  5. P. Tournois and V. Laude, ??????Negative group velocities in metal-film optical waveguides,?????? Opt. Commun. 137, 41-45 (1997). [CrossRef]
  6. Y. Wang, ??????Wavelength selection with coupled surface plasmon waves,?????? Appl. Phys. Lett. 82, 4385-4387 (2003). [CrossRef]
  7. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, ??????Omnidirectional resonance in a metal-dielectric-metal geometry,?????? Appl. Phys. Lett. 84, 4421-4423 (2004). [CrossRef]
  8. J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett.  90, 091116 (2007). [CrossRef]
  9. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96,097401(2006). [CrossRef] [PubMed]
  10. Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007). [CrossRef]
  11. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  12. F. Villa, T. Lopez-Rios, and L. E. Regalado, "Electromagnetic modes in metal-insulator-metal structures," Phys. Rev. B 63, 165103 (2001). [CrossRef]
  13. E. N. Economou, ??????Surface plasmons in thin films,?????? Phys. Rev. 182, 539-554 (1969). [CrossRef]
  14. M. A. Gilmore and B. L. Johnson, J. Appl. Phys. 93, 4497 (2003). [CrossRef]
  15. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005). [CrossRef]
  16. J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984). [CrossRef]
  17. J. J. Burke and G. I. Stegeman, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  18. A. D. Raki??, A. B. Djuriši??, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  19. G. W. Hanson and A. B. Yakovlev, "Investigation of mode interaction on planar dielectric waveguides with loss and gain," Radio Sci. 34, 1349-1359 (1999). [CrossRef]
  20. P. Berini, ??????Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,?????? Phys. Rev. B 63, 125417 (2001). [CrossRef]
  21. Y. D. Lin and J. W. Sheen, "Mode distinction and radiation-efficiency analysis of planar leaky-wave line source," IEEE Trans. Microwave Theory Tech. 45, 1672-1680 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited