OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14979–14986

Significant enhancement of broadband optical limiting behavior using off-resonant sub-wavelength coupled plasmonic waves

Chao-Yi Tai, Sheng Hsiung Chang, and TsenChieh Chiu  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14979-14986 (2008)
http://dx.doi.org/10.1364/OE.16.014979


View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the numerical investigation of the optical limiting behavior based on coupled nonlinear plasmonic waveguides. Exploiting the strong localization of the electromagnetic fields at metal-dielectric interfaces, significant enhancement of the nonlinear absorption was achieved. Two types of optical limiters (OLs), one based on the enhanced optical Kerr (OK) effect and the other based on the enhanced two-photon absorption (TPA), are proposed. Their transmission characteristics at off-resonant band of Au are investigated. The simulation results reveal that the linear transmittances in both cases are higher than 85%, and the limiting thresholds are 250 GW/cm2 and 42.69 GW/cm2 for the OK and TPA based OLs, respectively. As compared with the non-structured slab waveguides, the optical limiting thresholds are greatly reduced. Wideband operation over 200 nm was confirmed and TPA induced free carrier absorption (FCA) discussed.

© 2008 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.0190) Nonlinear optics : Nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 23, 2008
Revised Manuscript: August 7, 2008
Manuscript Accepted: September 3, 2008
Published: September 9, 2008

Citation
Chao-Yi Tai, Sheng Hsiung Chang, and TsenChieh Chiu, "Significant enhancement of broadband optical limiting behavior using off-resonant sub-wavelength coupled plasmonic waves," Opt. Express 16, 14979-14986 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14979


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. He, L. Yuan, J. D. Bhawalkar, and P. N. Prasad, "Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system," Appl. Opt. 36, 3387-3392 (1997). [CrossRef] [PubMed]
  2. G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995). [CrossRef]
  3. A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002). [CrossRef]
  4. R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967). [CrossRef]
  5. K. M. Nashold and D. P. Walter, "Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions," J. Opt. Soc. Am. B 12, 1228-1237 (1995). [CrossRef]
  6. D. Vincent and J. Cruickshank, "Optical limiting with C60 and other fullerenes," Appl. Opt. 36, 7794-7798 (1997). [CrossRef]
  7. B. L. Justus, A. J. Campillo, and A. L. Huston, "Thermal-defocusing/scattering optical limiter," Opt. Lett. 19, 673-675 (1994). [CrossRef] [PubMed]
  8. J. A. Hermann, "External self-focusing, self-bending and optical limiting with thin non-linear media," Opt. Quant. Electron. 19, 169-178 (1987). [CrossRef]
  9. Q. Li, C. Liu, Z. Liu, and Q. Gong, "Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals," Opt. Express 13, 1833-1838 (2005). [CrossRef] [PubMed]
  10. L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004). [CrossRef] [PubMed]
  11. O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchar-Desce, "A modular approach to two-photon absorption organic nanodots: brilliant dendrimers as alternative to semiconductor quantum dots," Chem. Commun. 915-917 (2006). [CrossRef] [PubMed]
  12. S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003). [CrossRef]
  13. P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004). [CrossRef]
  14. N. Izard, P. Billaud, D. Riehl, and E. Ahglaret, "Influence of structure on the optical limiting properties of nanotubes," Opt. Lett. 30, 1509-1511 (2005). [CrossRef] [PubMed]
  15. J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006). [CrossRef]
  16. H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006). [CrossRef]
  17. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006). [CrossRef]
  18. S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007). [CrossRef]
  19. S. H. Chang, T. Chiu, and C.-Y. Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007). [CrossRef] [PubMed]
  20. M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006). [CrossRef]
  21. I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007). [CrossRef]
  22. N. Suzuki, "FDTD analysis of two-photon absorption and free-carrier absorption in Si High-index-constrast waveguides," J. Lightwave Technol. 25, 2495-2501 (2007). [CrossRef]
  23. G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propagate. 48, 637-646 (2000). [CrossRef]
  24. Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003). [CrossRef]
  25. C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, Boston, 2003), Chap. 11.
  26. M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11, 1746-1756 (2003). [CrossRef] [PubMed]
  27. G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994). [CrossRef]
  28. R. G. Hunsperger, Integrated Optics 5th ed. (Springer, Berlin, 2002), Chap. 4.
  29. D. W. Peters, "Infrared modulator utilizing field-induced free carrier absorption," Appl. Opt. 6, 1033-1042 (1967). [CrossRef] [PubMed]
  30. V. R. Almeida, Q. Xu, and M. Lipson," Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett. 30, 2043-2045 (2005). [CrossRef]
  31. SelinH. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006). [CrossRef]
  32. Charles Kittel, Introduction to Solid State Physics 7th ed. (John Wiley & Sons, 1996).
  33. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991). [CrossRef]
  34. C. Y. Tai, S. H. Chang, and T. Chiu, "Numerical optimization of wide-angle, broadband operational polarization beam splitter based on anisotropically coupled surface-plasmon-polariton waves," J. Opt. Soc. Am. B 25, 1387-1392 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited