OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14987–14996

Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core

Bo-Wen Liu, Ming-Lie Hu, Xiao-Hui Fang, Yan-Feng Li, Lu Chai, Ching-Yue Wang, Weijun Tong, Jie Luo, Aleksandr A. Voronin, and Aleksei M. Zheltikov  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14987-14996 (2008)
http://dx.doi.org/10.1364/OE.16.014987


View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-µm-diameter core modified with a 0.9-µm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 23, 2008
Revised Manuscript: August 17, 2008
Manuscript Accepted: September 2, 2008
Published: September 9, 2008

Citation
Bo-Wen Liu, Ming-Lie Hu, Xiao-Hui Fang, Yan-Feng Li, Lu Chai, Ching-Yue Wang, Weijun Tong, Jie Luo, Aleksandr A. Voronin, and Aleksei M. Zheltikov, "Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core," Opt. Express 16, 14987-14996 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S.R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  4. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004). [CrossRef]
  5. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005). [CrossRef] [PubMed]
  6. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, "Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift," Opt. Lett. 31, 1328-1330 (2006). [CrossRef] [PubMed]
  7. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, "Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber," Opt. Lett. 31, 2323-2325 (2006). [CrossRef] [PubMed]
  8. A. A. Ivanov, A. A. Podshivalov, and A. M. Zheltikov, "Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy," Opt. Lett. 31, 3318-3320 (2006). [CrossRef] [PubMed]
  9. B. von Vacano, W. Wohlleben, and M. Motzkus, "Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy," Opt. Lett. 31, 413-415 (2006). [CrossRef] [PubMed]
  10. A. M. Zheltikov, "Time-resolved coherent Raman and sum-frequency generation spectroscopy with wavelength-tunable, short-pulse, photonic-crystal fiber light sources," J. Raman Spectrosc. 38, 1052-1063 (2007). [CrossRef]
  11. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, "2R-regenerative all-optical switch based on a highly nonlinear holey fiber," Opt. Lett. 26, 1233-1235 (2001). [CrossRef]
  12. S. O. Konorov, D. A. Akimov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, and M. Scalora, "Tuning the frequency of ultrashort laser pulses by a cross-phase-modulation-induced shift in a photonic crystal fiber," Opt. Lett. 30, 1548-1550 (2005). [CrossRef] [PubMed]
  13. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuška, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005). [CrossRef]
  14. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump.seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005). [CrossRef] [PubMed]
  15. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  16. A. M. Zheltikov, "Let there be white light: Supercontinuum generation by ultrashort laser pulses," Phys. Uspekhi,  49, 605-628 (2006). [CrossRef]
  17. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1176 (2006). [CrossRef]
  18. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell: "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  19. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  20. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001). [CrossRef]
  21. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift effects in photonic crystal fibre," J. Mod. Opt. 49, 757-767 (2002). [CrossRef]
  22. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  23. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  24. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006) [CrossRef]
  25. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000). [CrossRef]
  26. W. Reeves, J. Knight, P. Russell, and P. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [PubMed]
  27. G.  Wiederhecker, C.  Cordeiro, F.  Couny, F.  Benabid, S.  Maier, J. C.  Knight, C. H. B.  Cruz, and H. L.  Fragnito, "Field enhancement within an optical fibre with a subwavelength air core," Nat. Photonics  1, 115-118 (2007). [CrossRef]
  28. K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express 13, 8365-8371 (2005) [CrossRef] [PubMed]
  29. K. Saitoh, N. J. Florous, and M. Koshiba, "Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach," Opt. Lett. 31, 26-28 (2006). [CrossRef] [PubMed]
  30. A. M. Zheltikov, "Nanomanaging dispersion, nonlinearity, and gain of photonic-crystal fibers," Appl. Phys. B 84, 69-74 (2006). [CrossRef]
  31. E. E. Serebryannikov and A. M. Zheltikov, "Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis," J. Opt. Soc. Am. B 23, 1700-1707 (2006) [CrossRef]
  32. N. Florous, K. Saitoh, and M. Koshiba, "The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms," Opt. Express 14, 901-913 (2006). [CrossRef] [PubMed]
  33. M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006) [CrossRef]
  34. A. B. Fedotov, E. E. Serebryannikov, A. A. Ivanov, and A. M. Zheltikov, "Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber," Appl. Opt. 45, 6823-6830 (2006). [CrossRef] [PubMed]
  35. Y. Li, M. Hu, C. Wang, and A. M. Zheltikov, "Perturbative and phase-transition-type modification of mode field profiles and dispersion of photonic-crystal fibers by arrays of nanosize air-hole defects," Opt. Express 14, 10878-10886 (2006) [PubMed]
  36. E. E. Serebryannikov and A. M. Zheltikov, "Soliton self-frequency shift with diffraction-suppressed wavelength variance and timing jitter," J. Opt. Soc. Am. B 23, 1882-1887 (2006). [CrossRef]
  37. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990). [CrossRef] [PubMed]
  38. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron,  37, 398-404 (2001). [CrossRef]
  39. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  40. A. M. Zheltikov, "Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift," Phys. Rev. E 75, 037603 (2007). [CrossRef]
  41. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  42. F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers," Phys. Rev. E 70, 016615 (2004). [CrossRef]
  43. A. Efimov, A. Taylor, F. Omenetto, A. Yulin, N. Joly, F. Biancalana, D. Skryabin, J. Knight, and P. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004). [CrossRef] [PubMed]
  44. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  45. P. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426-439 (1990). [CrossRef] [PubMed]
  46. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  47. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986). [CrossRef] [PubMed]
  48. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).
  49. P. Falk, M. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). [CrossRef] [PubMed]
  50. A. Zheltikov, "Phase-matched four-wave mixing of guided and leaky modes in an optical fiber," Opt. Lett. 33, 839-841 (2008). [CrossRef] [PubMed]
  51. D. V. Skryabin, F. Biancalana, D. M. Bird and F. Benabid, "Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas," Phys. Rev. Lett. 93, 143907 (2004). [CrossRef] [PubMed]
  52. I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, "Raman-resonance-enhanced composite nonlinearity of air-guided modes in hollow photonic-crystal fibers," Opt. Lett. 31, 2604-2606 (2006) [CrossRef] [PubMed]
  53. A. V. Gorbach and D. V. Skryabin, "Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers," Opt. Express 16, 4858-4865 (2008). [CrossRef] [PubMed]
  54. A. A. Voronin and A. M. Zheltikov, "Soliton self-frequency shift decelerated by self-steepening," Opt. Lett. 33, 1723-1725 (2008). [CrossRef] [PubMed]
  55. S. Hell, "Toward fluorescence nanoscopy," Nature Biotech. 21, 1347-1355 (2003). [CrossRef]
  56. V. V. Krishnamachari and E. O. Potma, "Detecting lateral interfaces with focus-engineered coherent anti-Stokes Raman scattering microscopy,"J. Raman Spectrosc. 39, 593-598 (2008). [CrossRef]
  57. A.  Volkmer, J.-X.  Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epi-detected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett.  87, 23901 (2001). [CrossRef]
  58. J.-X.  Cheng and X. S.  Xie, " Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications," J. Phys. Chem. B  108, 827 (2004). [CrossRef]
  59. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS Endoscopy," Opt. Express 14, 4427-4432 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited