OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15013–15023

Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source

Paul S. Johnston and Kevin K. Lehmann  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 15013-15023 (2008)
http://dx.doi.org/10.1364/OE.16.015013


View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the design and construction of a cavity enhanced absorption spectrometer using broadband Brewster’s angle prism retroreflectors and a spatially coherent 500 nm to > 1.75 µm supercontinuum excitation source. Using prisms made from fused silica an effective cavity reflectivity of > 99.99% at 1.064 µm was achieved. A proof of principle experiment was performed by recording the cavity enhanced absorption spectrum of the weak b-X (1←0) transition of molecular oxygen at 14529 cm-1 and the fifth overtone of the acetylene C-H stretch at 18430 cm-1. CCD frames were integrated for 150 sec and 30 sec, with 3 frames (each 100 cm-1 wide) and 1 frame (266 cm-1 wide) required to observe the O2 and C2H2 spectra, respectively. A rms noise equivalent absorption (αmin) of 7.21 × 10-8 cm-1 Hz-1/2 and 1.28 × 10-7 cm-1 Hz-1/2 with full width half maximum line widths of 0.18 cm-1 and 0.44 cm-1 were achieved for the molecular oxygen band and the acetylene overtone, respectively.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.4780) Lasers and laser optics : Optical resonators
(190.0190) Nonlinear optics : Nonlinear optics
(300.0300) Spectroscopy : Spectroscopy
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: July 9, 2008
Revised Manuscript: August 21, 2008
Manuscript Accepted: August 30, 2008
Published: September 9, 2008

Citation
Paul S. Johnston and Kevin K. Lehmann, "Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source," Opt. Express 16, 15013-15023 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  2. R. Engeln, G. Berden, R. Peeters, and G. Meijer, "Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy," Rev. Sci. Instrum. 69, 3763-3769 (1998).
  3. A. O'Keefe, "Integrated cavity output analysis of ultra-weak absorption," Chem. Phys. Lett. 293, 331-336 (1998). [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, "Sub-doppler optical frequency reference at 1.064 ?m by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition," Opt. Lett. 21, 1000-1002 (1996). [CrossRef] [PubMed]
  5. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  6. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006). [CrossRef] [PubMed]
  7. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 ?m," Opt. Lett. 32, 307-309 (2007). [CrossRef] [PubMed]
  8. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16, 2387-2397 (2008). [CrossRef] [PubMed]
  9. K. K. Lehmann, "Recent advances in cavity ring-down spectroscopy & related methods," in Cavity Ring-Down User Meeting (University of Cork, Cork Ireland 2006), http://laser-spectroscopy.ucc.ie/CRDS_UserMeeting_2006/Home.htm
  10. K. K. Lehmann and P. Rabinowitz, "High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster's angle prism retroreflectors," U.S. Patent 5973864 (1999).
  11. G. Engel, W. B. Yan, J. B. Dudek, K. K. Lehmann, and P. Rabinowitz, "Ring-down spectroscopy with a Brewster's angle prism resonator," in Laser Spectroscopy XIV International Conference, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, eds. (World Scientific, Singapore, 1999), pp. 314-315.
  12. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity," Rev. Sci. Instrum. 68, 2978-2989 (1997). [CrossRef]
  13. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  14. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16, 10178-10188 (2008). [CrossRef] [PubMed]
  15. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003). [CrossRef]
  16. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001). [CrossRef]
  17. K. K. Lehmann, Department of Chemistry, University of Virginia, Charlottesville, VA 22904, P. S. Johnston and P. Rabinowitz are preparing a manuscript to be called "Design and analysis of Brewster's angle prism retroreflectors for cavity enhanced spectroscopy."
  18. M. Bass, ed., Handbook of Optics Volume II - Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill), Vol. 2.
  19. C. Xiong and W. J. Wadsworth, "Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation," Opt. Express 16, 2438-2445 (2008). [CrossRef] [PubMed]
  20. W. Becker, Advanced time-correlated single photon counting techniques (Springer, New York, 2005). [CrossRef]
  21. S. Schroder, M. Kamprath, A. Duparre, A. Tunnermann, B. Kuhn, and U. Klett, "Bulk scattering properties of synthetic fused silica at 193 nm," Opt. Express 14, 10537-10549 (2006). [CrossRef] [PubMed]
  22. G. J. Scherer, K. K. Lehmann, and W. Klemperer, "The high-resolution visible overtone spectrum of acetylene," J. Chem. Phys. 78, 2817-2832 (1983). [CrossRef]
  23. L. S. Rothman,  et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  24. J. S. Wong, "Pressure Broadening of single vibrational-rotational transitions of acetylene at ?=5," J. Mol. Spectrosc. 82, 449-451 (1980). [CrossRef]
  25. H. Chen and W. B. Yan, "Prism-based cavity ringdown spectroscopy: broadband and ultrahigh reflectivity," in 62nd International Symposium on Molecular Spectroscopy (The Ohio State University Columbus, OH, 2007), http://hdl.handle.net/1811/31394.
  26. T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003). [CrossRef]
  27. E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365, 237-243 (2002). [CrossRef]
  28. A. A. Ruth, J. Orphal, and S. E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited