OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15024–15032

Sensitivity dependences on side length and aspect ratio of a diaphragm in a glass-based guided-wave optical pressure sensor

Hiroyuki Nikkuni, Yu Watanabe, Masashi Ohkawa, and Takashi Sato  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 15024-15032 (2008)
http://dx.doi.org/10.1364/OE.16.015024


View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

According to our previous theoretical study, sensor sensitivity is proportional to the cube of the side length of the diaphragm in a guided-wave optical pressure sensor consisting of a glass diaphragm and a single-mode waveguide on the diaphragm. Also, to obtain higher sensitivity, an aspect ratio of the diaphragm should be approximately 1 for two waveguide positions: the center and the edge of the diaphragm. In this study, sensitivity dependences on side length and aspect ratio of the diaphragm were experimentally examined. The obtained experimental results strongly supported the theoretical predictions.

© 2008 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: July 16, 2008
Revised Manuscript: August 29, 2008
Manuscript Accepted: September 1, 2008
Published: September 9, 2008

Citation
Hiroyuki Nikkuni, Yu Watanabe, Masashi Ohkawa, and Takashi Sato, "Sensitivity dependences on side length and aspect ratio of a diaphragm in a glass-based guided-wave optical pressure sensor," Opt. Express 16, 15024-15032 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, M. Wang, and H. Li, "Optical MEMS pressure sensor based on Fabry-Perot interferometry," Opt. Express 14, 1497-1504 (2006). [CrossRef] [PubMed]
  2. J. Xu, X. Wang, K. L. Cooper, and A. Wang, "Miniature all-silica fiber optic pressure and acoustic sensors," Opt. Lett. 30, 3269-3271 (2005). [CrossRef]
  3. A. Kots and A. Paritsky, "Fiber optic microphone for harsh environment," Proc. SPIE 3852, 106-112 (1999). [CrossRef]
  4. H. Bezzaoui and E. Voges, "Integrated optics combined with micromechanics on silicon," Sens. Actuators A 29, 219-223 (1991). [CrossRef]
  5. N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007). [CrossRef]
  6. M. Ohkawa, M. Izutsu, and T. Sueta, "Integrated optic pressure sensor on silicon substrate," Appl. Opt. 28, 5153-5157 (1989).
  7. G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994). [CrossRef]
  8. G. N. De Brabander, G. Beheim, and J. T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998). [CrossRef]
  9. H. Porte, V. Gorel, S. Kiryenko, J. Goedgebuer, W. Daniau, and P. Blind, "Imbalanced Mach-Zehnder interferometer integrated in micromachined silicon substrate for pressure sensor," J. Lightwave Technol. 17, 229-233 (1999). [CrossRef]
  10. M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002). [CrossRef]
  11. H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008). [CrossRef]
  12. M. Ohkawa, K. Hasebe, S. Sekine, and T. Sato, "Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect," Appl. Opt. 41, 5016-5021 (2002). [CrossRef] [PubMed]
  13. M. Tabib-Azar, and G. Beheim, "Modern trends in microstructures and integrated optics for communication, sensing, and actuation," Opt. Eng. 36, 1307-1318 (1997). [CrossRef]
  14. P. Rai-Choudhury, MEMS and MOEMS Technology and Applications (SPIE Press, Washington, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited