OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15115–15122

Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques

Yoshio Tanaka, Hiroyuki Kawada, Ken Hirano, Mitsuru Ishikawa, and Hiroyuki Kitajima  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 15115-15122 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Automated optical trapping of non-spherical objects offers great flexibility as a non-contact micromanipulation tool in various research fields. Computer vision control enables fruitful applications of automated manipulation in biology and material science. Here we demonstrate fully-automated, simultaneous, independent trapping and manipulation of multiple non-spherical objects using multiple-force optical clamps. Customized real-time feature recognition and trapping beam control algorithms are also presented.

© 2008 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(150.0150) Machine vision : Machine vision
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 24, 2008
Revised Manuscript: September 8, 2008
Manuscript Accepted: September 8, 2008
Published: September 10, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Yoshio Tanaka, Hiroyuki Kawada, Ken Hirano, Mitsuru Ishikawa, and Hiroyuki Kitajima, "Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques," Opt. Express 16, 15115-15122 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  3. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16, 1463-1465 (1991). [CrossRef] [PubMed]
  4. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  5. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles," Opt. Express 10, 1550-1556 (2002). [PubMed]
  6. F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004). [CrossRef]
  7. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005). [CrossRef] [PubMed]
  8. J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994). [CrossRef] [PubMed]
  9. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995). [CrossRef] [PubMed]
  10. Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007). [CrossRef]
  11. S. C. Chapin, V. Germain, and E. R. Dufresne, "Automated trapping, assembly, and sorting with holographic optical tweezers," Opt. Express 14, 13095-13100 (2006). [CrossRef] [PubMed]
  12. I. R. Perch-Nielsen, P. J. Rodrigo, C. A. Alonzo, and J. Glückstad, "Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment," Opt. Express 14, 12199-12205 (2006). [CrossRef] [PubMed]
  13. P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, "2D optical manipulation and assembly of shape-complementary planar microstructures," Opt. Express 15, 9009-9014 (2007). [CrossRef] [PubMed]
  14. C. Mio and D. W. M. Marr, "Optical trapping for the manipulation of colloidal particles," Adv. Mater. 12, 917-920 (2000). [CrossRef]
  15. D. H. Ballard and C. M. Brown, Computer Vision (Prentice-Hall, 1982), Chap. 3-4.
  16. Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006). [CrossRef]
  17. H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991). [CrossRef]
  18. Y. Tanaka, A. Murakami, K. Hirano, H. Nagata, and M. Ishikawa, "Development of PC-controlled laser manipulation system with image processing functions," Proc. SPIE. 6374, 63740P1-P8 (2006).
  19. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005). [CrossRef] [PubMed]
  20. X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. Fredberg, "Universal physical responses to stretch in the living cell," Nature 447, 592-596 (2007).</> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (1023 KB)     
» Media 2: MOV (2103 KB)     
» Media 3: MOV (1581 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited