OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15149–15169

Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second

Benjamin Potsaid, Iwona Gorczynska, Vivek J. Srinivasan, Yueli Chen, James Jiang, Alex Cable, and James G. Fujimoto  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 15149-15169 (2008)
http://dx.doi.org/10.1364/OE.16.015149


View Full Text Article

Enhanced HTML    Acrobat PDF (16971 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate ultrahigh speed spectral/Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000–312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5–3.0 micron axial image resolution is demonstrated at ~100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at > 300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with ~8–9 micron axial resolution at 250,000 axial scans per second, a 512 × 512 × 400 voxel volumetric 3D-OCT data set can be acquired in only ~1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and improved monitoring of disease progression and response to therapy in ophthalmology, as well as have a wide range of research and clinical applications in other areas.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 11, 2008
Revised Manuscript: September 3, 2008
Manuscript Accepted: September 5, 2008
Published: September 11, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Benjamin Potsaid, Iwona Gorczynska, Vivek J. Srinivasan, Yueli Chen, James Jiang, Alex Cable, and James G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16, 15149-15169 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178. [CrossRef]
  2. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Inc., New Jersey, USA, 2004).
  3. C. K. Hitzenberger, "Optical measurement of the axial eye length by laser Doppler interferometry." Invest. Ophthalmol. Vis. Sci. 32, 616-624 (1991). [PubMed]
  4. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett.  18, 1864-1866 (1993). http://ol.osa.org/abstract.cfm?URI=ol-18-21-1864. [CrossRef]
  5. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).
  6. U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, "Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser," Proc. SPIE 2981, 20-28 (1997). http://link.aip.org/link/?PSI/2981/20/1. [CrossRef]
  7. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). http://ol.osa.org/abstract.cfm?URI=ol-22-5-340. [CrossRef]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). http://www.sciencedirect.com/science/article/B6TVF-3XWS0W5-99/1/12de34cbceb5a231688bc12b28aeef5e. [CrossRef]
  9. G. Häusler and M. W. Lindner, "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett.  28, 2067-2069 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067. [CrossRef]
  11. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183. [CrossRef]
  12. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889. [CrossRef]
  13. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of humanretina and choroid," Opt. Express 14, 4403-4411 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403. [CrossRef]
  14. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-5937. [CrossRef]
  15. H. Lim,M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-26-12902. [CrossRef]
  16. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett.  32, 361-363 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-4-361. [CrossRef]
  17. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "Invivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. pp.iovs07-1553 (2008). http://www.iovs.org/cgi/content/abstract/iovs.07-1553v1.
  18. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett.  32, 2049-2051 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-14-2049. [CrossRef]
  19. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. pp. iovs.08-2127 (2008). http://www.iovs.org/cgi/content/abstract/iovs.08-2127v1.
  20. S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14, 11575-11584 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-24-11575. [CrossRef]
  21. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s," Opt. Lett.  33, 1318-1320 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-12-1318. [CrossRef]
  22. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252. [CrossRef]
  23. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121. [CrossRef]
  24. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://link.aip.org/link/?JBO/7/457/1. [CrossRef]
  25. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-25-3490. [CrossRef]
  26. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-11-2435. [CrossRef]
  27. R. Leitgeb,W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-10-2156. [CrossRef]
  28. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-11-2404. [CrossRef]
  29. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-3-367. [CrossRef]
  30. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-2-444. [CrossRef]
  31. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4380. [CrossRef]
  32. V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Characterization of Outer Retinal Morphology with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci.  49, 1571-1579 (2008). http://www.iovs.org/cgi/content/abstract/49/4/1571. [CrossRef]
  33. H. Helmers and M. Schellenberg, "CMOS vs. CCD sensors in speckle interferometry," Opt. Laser Technol.  35, 587-595 (2003). http://www.sciencedirect.com/science/article/ B6V4H-48NX786-1/1/7651a31436c9f412c49f2a24ebbf78b1. [CrossRef]
  34. W. J. Donnelly III and A. Roorda, "Optimal pupil size in the human eye for axial resolution," J. Opt. Soc. Am. A 20, 2010-2015 (2003). http://josaa.osa.org/abstract.cfm?URI=josaa-20-11-2010. [CrossRef]
  35. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett.  27, 406-408 (2002). http://ol.osa.org/abstract.cfm?URI=ol-27-6-406. [CrossRef]
  36. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun.  246, 569-578 (2005). http://www.sciencedirect.com/science/article/B6TVF-4DV19JB-4/2/61c22c1efb8e9edce60626561d2b092e. [CrossRef]
  37. Z. Hu, Y. Pan, and A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt.  46, 8499-8505 (2007). http://ao.osa.org/abstract.cfm?URI=ao-46-35-8499. [CrossRef]
  38. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express 16, 4163-4176 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-6-4163. [CrossRef]
  39. American National Standards Institute, "American National Standard for Safe Use of Lasers, ANSI Z136.1," (2000).
  40. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15,16922-16932 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16922. [CrossRef]
  41. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, "Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging," Proc. SPIE 6426, 642607 1-11 (2007). http://link.aip.org/link/?PSI/6426/642607/1.
  42. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol.  292, 497-523 (1990). http://www3.interscience.wiley.com/journal/109690971/abstract. [CrossRef] [PubMed]
  43. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromaticaberration correction," Opt. Express 16, 8126-8143 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-8126. [CrossRef]
  44. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transverse scanning optical coherence tomography," Opt. Lett.  31, 1821-1823 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-12-1821. [CrossRef]
  45. A. Roorda, F. Romero-Borja, I. William Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-405.
  46. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007). http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313. [CrossRef]
  47. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-487. [CrossRef]
  48. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, "Retinally stabilized cone-targeted stimulus delivery," Opt. Express 15, 13731-13744 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-21-13731. [CrossRef]
  49. R. J. Zawadzki, S. S. Choi, S.M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography:optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007). http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373. [CrossRef]
  50. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, and M. Belkin, "Special report: Noninvasive multi-parameter functional optical imaging of the eye," Ophthalmic Surg. Lasers Imaging 36, 57-66 (2005). http://www.osli.com/showAbst.asp?thing=9698.
  51. J. A. Martin and A. Roorda, "Direct and Noninvasive Assessment of Parafoveal Capillary Leukocyte Velocity," Ophthalmology 112, 2219-2224 (2005). http://www.sciencedirect.com/science/article/B6VT2-4HDX6HD-1/2/b9dbebaa472a5260de82971409d9a373. [CrossRef] [PubMed]
  52. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31, 2308-2310 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-15-2308. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3967 KB)     
» Media 2: AVI (2335 KB)     
» Media 3: AVI (2433 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited