OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15170–15184

Design strategies and rigorous conditions for single-polarization single-mode waveguides

Karen K. Y. Lee, Yehuda Avniel, and Steven G. Johnson  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 15170-15184 (2008)
http://dx.doi.org/10.1364/OE.16.015170


View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We establish rigorous necessary analytical conditions for the existence of single-polarization single-mode (SPSM) bandwidths in index-guided microstructured waveguides (such as photonic-crystal fibers). These conditions allow us to categorize designs for SPSM waveguides into four strategies, at least one of which seems previously unexplored. Conversely, we obtain rigorous sufficient conditions for the existence of two cutoff-free index-guided modes in a wide variety of microstructured dielectric waveguides with arbitrary periodic claddings, based on the existence of a degenerate fundamental mode of the cladding (a degenerate light line). We show how such a degenerate light line, in turn, follows from the symmetry of the cladding.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(130.2790) Integrated optics : Guided waves
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 22, 2008
Revised Manuscript: September 1, 2008
Manuscript Accepted: September 1, 2008
Published: September 11, 2008

Citation
Karen K. Y. Lee, Yehuda Avniel, and Steven G. Johnson, "Design strategies and rigorous conditions for single-polarization single-mode waveguides," Opt. Express 16, 15170-15184 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic Press, London, 1998).
  2. T. F. Morse and A. Mendez, Specialty Optical Fibers Handbook (Academic Press, 2007).
  3. K. K. Lee, Y. Avniel, and S. G. Johnson, "Rigorous sufficient conditions for index-guided modes in microstructured dielectric waveguides," Opt. Express 16, 9261-9275 (08). [CrossRef]
  4. A. Bamberger and A. S. Bonnet, "Mathematical analysis of the guided modes of an optical fiber," SIAM J. Math. Anal. 21, 1487-1510 (1990). [CrossRef]
  5. H. P. Urbach, "Analysis of the domain integral operator for anisotropic dielectric waveguides," J. Math. Anal. 27,204-220 (1996).
  6. T. Okoshi and K. Oyamoda, "Single-polarization single-mode optical fibre with refractive-index pits on both sides of core," Electron. Lett.  16,712-713 (1980). [CrossRef]
  7. T. Okoshi, K. Oyamada, M. Nishimura, and H. Yakato, "Side tunnel fibre: An approach to polarizationmaintaining optical waveguiding schemes," Electron. Lett. 18, 824-826 (1982). [CrossRef]
  8. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, "A single-polarization fiber," J. Lightwave Technol. 1, 370-374 (1983). [CrossRef]
  9. K. Tajima, M. Ohashi, and Y. Sasaki, "A new single-polarization optical fiber," J. Lightwave Technol. 7, 1499-1503 (1989). [CrossRef]
  10. M. J. Messerly, J. R. Onstott, and R. C. Mikkelson, "A broad-band single polarization optical fiber," J. Lightwave Technol. 9, 817-820 (1991). [CrossRef]
  11. A. Ferrando and J. J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers," Appl. Phys. Lett. 78, 3184-3186 (2001). [CrossRef]
  12. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Tech. Lett. 15, 1384-1386 (2003). [CrossRef]
  13. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Tech. Lett. 16, 182-184 (2004). [CrossRef]
  14. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005). [CrossRef] [PubMed]
  15. M.-J. Li, X. Chen, D. A. Nolan, G. E. Berkey, J. Wang,W. A. Wood, and L. A. Zenteno, "High bandwidth single polarization fiber with elliptical central air hole," J. Lightwave Technol. 23, 3454-3460 (2005). [CrossRef]
  16. M.-J. Li, D. A. Nolan, G. E. Berkey, X. Chen, J. Koh, D. T. Walton, J. Wang, W. A. Wood, and L. A. Zenteno, "High-performance single-polarization optical fibers," Proc. SPIE 5623, 612-621 (2005). [CrossRef]
  17. X. Liu, F. Zhang, M. Zhang, and P. Ye, "A novel single-mode single-polarization photonic crystal fiber using resonant absorption effect," Proc. SPIE 6351, 63,511K (2006).
  18. J. Ju, W. Jin, and M. S. Demokan, "Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 ?m," J. Lightwave Technol. 24, 825-830 (2006). [CrossRef]
  19. F. Zhang, M. Zhang, X. Liu, and P. Ye, "Design of wideband single-polarization single-mode photonic crystal fiber," J. Lightwave Technol. 25, 1184-1189 (2007). [CrossRef]
  20. M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanóczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, "Single-polarization single-mode photonic band gap fiber," Acta Phys. Pol. A 111, 239-245 (2007).
  21. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for singlepolarization or high-birefringent guidance," Opt. Express 14, 914-925 (2006). [CrossRef] [PubMed]
  22. M. Eguchi and Y. Tsuji, "Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode," Opt. Lett. 32, 2112-2114 (2007). [CrossRef] [PubMed]
  23. D. Chen and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightwave Technol. 25, 2700-2705 (2007). [CrossRef]
  24. R. A. Waldron, Theory of Guided Electromagnetic Waves (Van Nostrand Reinhold, London, 1969).
  25. W. Eickhoff, "Stress-induced single-polarization single-mode fiber," Opt. Lett. 7, 629-631 (1982). [CrossRef] [PubMed]
  26. A. W. Snyder and F. Ruöhl, "Single-mode, single-polarization fibers made of birefringent material," J. Opt. Soc. Am. 73, 1165-1174 (1983). [CrossRef]
  27. Y. Chen, "Tapered polarizing anisotropic fibers," Opt. Lett. 13, 598-600 (1988). [CrossRef]
  28. F. F. Ruöhl and D. Wong, "True single-polarization design for bow-tie optical fibers," Opt. Lett. 14, 648-650 (1989). [CrossRef]
  29. K. S. Chiang, "Stress-induced birefringence fibers designed for single-polarization single-mode operation," J. Lightwave Technol. 7, 436-441 (1989). [CrossRef]
  30. M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]
  31. Y. C. Liu and Y. Lai, "Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes:numerical analysis," Opt. Express 13, 225-235 (2005). [CrossRef] [PubMed]
  32. S. Kim, U. C. Paek, and K. Oh, "New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range," Opt. Express 13, 6039-6050 (2005). [CrossRef] [PubMed]
  33. E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  34. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Solja??ci???c, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  35. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  36. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  37. A.-S. Bonnet-Bendhia and R. Djellouli, "High-frequency asymptotics of guided modes in optical fibres," IMA J. Appl. Math. 52, 271-287 (1994). [CrossRef]
  38. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  39. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001). [CrossRef]
  40. P. Kuchment and B. Ong, "On guided waves in photonic crystal waveguides," in Waves in Periodic and Random Media, vol. 339 of Contemporary Mathematics, pp. 105-115 (AMS, Providence, RI, 2003).
  41. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  42. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Springer, New York, 2003). [CrossRef]
  43. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005). [CrossRef]
  44. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1975).
  45. C. Elachi, "Waves in active and passive periodic structures: A review," Proc. IEEE 64, 1666-1698 (1976). [CrossRef]
  46. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, "Guided and defect modes in periodic dielectric waveguides," J. Opt. Soc. Am. B 12, 1267-1272 (1995). [CrossRef]
  47. P. Kuchment, "The Mathematics of Photonic Crystals," in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds., Frontiers in Applied Mathematics, pp. 207-272 (SIAM, Philadelphia, 2001).
  48. K. Yang and M. de Llano, "Simple variational proof that any two-dimensional potential well supports at least one bound state," Am. J. Phys. 57, 85-86 (1989). [CrossRef]
  49. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, Heidelberg, 1996).
  50. M. Tinkham, Group Theory and Quantum Mechanics (Dover, New York, 2003).
  51. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous materials," Phys. Rev. E 71, 036,617 (2005). [CrossRef]
  52. S. Wilcox, L. Botten, C. M. de Sterke, B. Kuhlmey, R. McPhedran, D. Fussell, and S. Tomljenovic-Hanic, "Long wavelength behavior of the fundamental mode in microstructured optical fibers," Opt. Express 13 (2005). [CrossRef] [PubMed]
  53. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 1982).
  54. C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2006). [CrossRef]
  55. S. Kawakami and S. Nishida, "Characteristics of a doubly clad optical fiber with a low-index inner cladding," IEEE J. Quantum Electron. 10, 879-887 (1974). [CrossRef]
  56. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000). [CrossRef] [PubMed]
  57. D. Mogilevtsev, J. Broeng, S. Barkou, and A. Bjarklev, "Design of polarization-preserving photonic crystal fibres with elliptical pores," J. Opt. A: Pure Appl. Opt. 3, 141-143 (2001). [CrossRef]
  58. L. Wang and D. Yang, "Highly birefringent elliptical-hole rectangular lattice photonic crystal fibers with modified air holes near the core," Opt. Express 15, 8892-8897 (2007). [CrossRef] [PubMed]
  59. S. G. Johnson, M. L. Povinelli, M. Solja??i??, A. Karalis, S. Jacobs, and J. D. Joannopoulos, "Roughness losses and volume-current methods in photonic-crystal waveguides," Appl. Phys. B 81, 283-293 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited