OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15206–15211

Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices

Ran An, Michelle D. Hoffman, Margaret A. Donoghue, Alan J. Hunt, and Stephen C. Jacobson  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 15206-15211 (2008)
http://dx.doi.org/10.1364/OE.16.015206


View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using water-assisted femtosecond laser machining, we fabricated electrospray nozzles on glass coverslips and on assembled microfluidic devices. Machining the nozzles after device assembly facilitated alignment of the nozzles over the microchannels. The basic nozzle design is a through-hole in the coverslip to pass liquids and a trough machined around the through-hole to confine the electrospray and prevent liquid from wicking across the glass surface. Electrospray from the nozzles was stable with and without pressure-driven flow applied and was evaluated using mass spectra of the peptide bradykinin.

© 2008 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4000) Optical devices : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Micromachining

History
Original Manuscript: August 19, 2008
Revised Manuscript: September 5, 2008
Manuscript Accepted: September 5, 2008
Published: September 11, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Ran An, Michelle D. Hoffman, Margaret A. Donoghue, Alan J. Hunt, and Stephen C. Jacobson, "Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices," Opt. Express 16, 15206-15211 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Ramsey and J. M. Ramsey, "Generating electrospray from microchip devices using electroosmotic pumping," Anal. Chem. 69, 1174-1178 (1997). [CrossRef]
  2. Q. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, and B. L. Karger, "Multichannel microchip electrospray mass spectrometry," Anal. Chem. 69, 426-430 (1997). [CrossRef] [PubMed]
  3. I. M. Lazar, J. Grym, and F. Foret, "Microfabricated devices: A new sample introduction approach to mass spectrometry," Mass Spectrom. Rev. 25, 573-594 (2006). [CrossRef] [PubMed]
  4. S. Koster and E. Verpoorte, "A decade of microfluidic analysis coupled with electrospray mass spectrometry: An overview," Lab Chip 7, 1394-1412 (2007). [CrossRef] [PubMed]
  5. L. Licklider, X. Q. Wang, A. Desai, Y. C. Tai, and T. D. Lee, "A micromachined chip-based electrospray source for mass spectrometry," Anal. Chem. 72, 367-375 (2000). [CrossRef] [PubMed]
  6. G. A. Schultz, T. N. Corso, S. J. Prosser, and S. Zhang, "A fully integrated monolithic microchip electrospray device for mass spectrometry," Anal. Chem. 72, 4058-4063 (2000). [CrossRef] [PubMed]
  7. M. Schilling, W. Nigge, A. Rudzinski, A. Neyer, and R. Hergenroder, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices," Lab Chip 4, 220-224 (2004). [CrossRef] [PubMed]
  8. N. F. Yin, K. Killeen, R. Brennen, D. Sobek, M. Werlich, and T. V. van de Goor, "Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip," Anal. Chem. 77, 527-533 (2005). [CrossRef] [PubMed]
  9. L. Wang, R. Stevens, A. Malik, P. Rockett, M. Paine, P. Adkin, S. Martyn, K. Smith, J. Stark, and P. Dobson, "High-aspect-ratio silica nozzle fabrication for nano-emitter electrospray applications," Microelectron. Eng. 84, 1190-1193 (2007). [CrossRef]
  10. P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, "Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses," J. Appl. Phys. 78, 6233-6240 (1995). [CrossRef]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  12. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). [CrossRef]
  13. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). [CrossRef]
  14. C. Momma, S. Nolte, B. N. Chichkov, F. von Alvensleben, and A. Tunnermann, "Precise laser ablation with ultrashort pulses," Appl. Surf. Sci. 110, 15-19 (1997). [CrossRef]
  15. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, "Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses," Opt. Lett. 26, 1912-1914 (2001). [CrossRef]
  16. R. An, Y. Li, Y. P. Dou, Y. Fang, H. Yang, and Q. H. Gong, "Laser micro-hole drilling of soda-lime glass with femtosecond pulses," Chin. Phys. Lett. 21, 2465-2468 (2004). [CrossRef]
  17. Y. Iga, T. Ishizuka, W. Watanabe, K. Itoh, Y. Li, and J. Nishii, "Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses," Jpn. J. Appl. Phys. Part 1 43, 4207-4211 (2004). [CrossRef]
  18. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, "Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass," Appl. Phys. A-Mater. Sci. Process. 79, 605-612 (2004). [CrossRef]
  19. R. An, Y. Li, Y. P. Dou, H. Yang, and Q. H. Gong, "Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses," Opt. Express 13, 1855-1859 (2005). [CrossRef] [PubMed]
  20. K. Ke, E. F. Hasselbrink, and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005). [CrossRef] [PubMed]
  21. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005). [CrossRef]
  22. R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, "Water-assisted drilling of microfluidic chambers inside silica glass with femtosecond laser pulses," Appl. Phys. A-Mater. Sci. Process. 83, 27-29 (2006). [CrossRef]
  23. J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, "Submicrometer pore-based characterization and quantification of antibody-virus interactions," Small 2, 967-972 (2006). [CrossRef] [PubMed]
  24. J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, "Label-free affinity assays by rapid detection of immune complexes in submicrometer pores," Angew. Chem.Int. Ed. 45, 2281-2285 (2006). [CrossRef]
  25. S. Lee, J. L. Bull, and A. J. Hunt, "Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown," Appl. Phys. Lett. 91, 023111 (2007). [CrossRef]
  26. R. An, J. D. Uram, E. C. Yusko, K. Ke, M. Mayer, and A. J. Hunt, "Ultrafast laser fabrication of submicrometer pores in borosilicate glass," Opt. Lett. 33, 1153-1155 (2008). [CrossRef] [PubMed]
  27. Z. Zhuang, J. A. Starkey, Y. Mechref, M. V. Novotny, and S. C. Jacobson, "Electrophoretic analysis of N-glycans on microfluidic devices," Anal. Chem. 79, 7170-7175 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited