OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15268–15285

Total light approach of time-domain fluorescence diffuse optical tomography

Andhi Marjono, Akira Yano, Shinpei Okawa, Feng Gao, and Yukio Yamada  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 15268-15285 (2008)
http://dx.doi.org/10.1364/OE.16.015268


View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, time-domain fluorescence diffuse optical tomography in biological tissue is numerically investigated using a total light approach. Total light is a summation of excitation light and zero-lifetime emission light divided by quantum yield. The zero-lifetime emission light is an emitted fluorescence light calculated by assuming that the fluorescence lifetime is zero. The zero-lifetime emission light is calculated by deconvolving the actually measured emission light with a lifetime function, an exponential function for fluorescence decay. The object for numerical simulation is a 2-D 10 mm-radius circle with the optical properties simulating biological tissues for near infrared light, and contains regions with fluorophore. The inverse problem of fluorescence diffuse optical tomography is solved using time-resolved simulated measurement data of the excitation and total lights for reconstructing the absorption coefficient and fluorophore concentration simultaneously. The mean time of flight is used as the featured data-type extracted from the time-resolved data. The reconstructed images of fluorophore concentration show good quantitativeness and spatial reproducibility. By use of the total light approach, computation is performed much faster than the conventional ones.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 11, 2008
Revised Manuscript: September 5, 2008
Manuscript Accepted: September 9, 2008
Published: September 12, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Andhi Marjono, Akira Yano, Shinpei Okawa, Feng Gao, and Yukio Yamada, "Total light approach of time-domain fluorescence diffuse optical tomography," Opt. Express 16, 15268-15285 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002). [CrossRef] [PubMed]
  2. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  3. M. Patterson and W. Pogue, "Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt 33, 1963-1974 (1992). [CrossRef]
  4. X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996). [CrossRef] [PubMed]
  5. D. J. Hawrysz and E. M. Sevick-Muraca, "Development toward diagnostic breast cancer imaging using near-infrared optical measurements and contrast agents," Neoplasia 2, 388-417 (2000). [CrossRef]
  6. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation," Opt. Lett. 26, 893-895 (2001). [CrossRef]
  7. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002). [CrossRef] [PubMed]
  8. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  10. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  11. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt 42, 3081-3094 (2003). [CrossRef] [PubMed]
  12. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004). [CrossRef]
  13. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004). [CrossRef] [PubMed]
  14. V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005). [CrossRef]
  15. J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997). [CrossRef] [PubMed]
  16. K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000). [CrossRef] [PubMed]
  17. D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001). [CrossRef]
  18. M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001). [CrossRef] [PubMed]
  19. D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004). [CrossRef] [PubMed]
  20. G. M. Turner, G Zacharakis, A. Sourbet, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005). [CrossRef] [PubMed]
  21. G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005). [CrossRef]
  22. S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005). [CrossRef] [PubMed]
  23. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005). [CrossRef]
  24. X. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005). [CrossRef] [PubMed]
  25. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006). [CrossRef] [PubMed]
  26. S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008). [CrossRef] [PubMed]
  27. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999). [CrossRef]
  28. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  29. R. Model, M. Orlt, and M. Walzel, "Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data," J. Opt. Soc. Am. A 14, 313-323 (1997). [CrossRef]
  30. M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef] [PubMed]
  31. H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005). [CrossRef]
  32. F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001). [CrossRef]
  33. R. Schulz, J. Peter, W. Semmler, and W. Bangerth, "Independent modeling of fluorescence excitation and emission with the finite element method," in OSA Biomedical Optics Topical Meeting, Technical Digest, ThF24, OSA (2004).
  34. A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007). [CrossRef]
  35. A. Marjono, Y. Akira, S. Okawa, F. Gao, and Y. Yamada, "Full time-resolved fluorescence diffuse optical tomography using total light approach," in OSA Biomedical Optics Topical Meeting, Technical Digest, BMD33, OSA (2008).
  36. Y. Yamada, "Light-tissue interaction and optical imaging in biomedicine," in Annual Review of Heat Transfer, C. L. Tien, ed., (Begell House, 1995), Vol. 6, pp. 1-59.
  37. M. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  38. L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995). [CrossRef] [PubMed]
  39. S. Muraca and L. Burch, "Origins of phosphorescence signals reemitted from tissues," Opt. Lett. 19, 1928-1930 (1994). [CrossRef]
  40. K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the application," Phys. Rev. E 50, 3634-3640 (1994). [CrossRef]
  41. T. Farrel and M. Patterson, "Diffusion modelling of fluorescence in tissue," in Handbook of Biomedical Fluorescence, M. Mycek and W. Pogue, eds., (Marcel Dekker, 2003), pp. 29-60.
  42. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).
  43. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983). [CrossRef] [PubMed]
  44. W. G. Egan and T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, 1979).
  45. P. A. Jansson, Deconvolution with Applications in Spectroscopy (Academic Press Inc., 1984).
  46. P. A. Jansson, R. H. Hunt, and E. K. Plyler, "Resolution enhancement of spectra," J. Opt. Soc. Am. 60, 596-599 (1970).
  47. V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999). [CrossRef]
  48. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  49. F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000). [CrossRef]
  50. M. Sevick-Muraca, A. Godavarty, J. Houston, A. Thompson, and R. Roy, "Near-infrared imaging with fluorescent contrast agents," in Handbook of Biomedical Fluorescence, M. Mycek and W. Pogue, eds. (Marcel Dekker, 2003), pp. 445-528.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited