OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15286–15296

Real time assessment of RF cardiac tissue ablation with optical spectroscopy

Stavros G. Demos and Shiva Sharareh  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 15286-15296 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1999 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, contact of catheter with the tissue, lesion formation, depth of penetration of the lesion, formation of char and coagulum during the ablation.

© 2008 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 22, 2008
Revised Manuscript: September 8, 2008
Manuscript Accepted: September 9, 2008
Published: September 12, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Stavros G. Demos and Shiva Sharareh, "Real time assessment of RF cardiac tissue ablation with optical spectroscopy," Opt. Express 16, 15286-15296 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Cesario, A. Mahajan, and K. Shivkumar, "Lesion-forming technologies for catheter ablation of atrial fibrillation," Heart Rhythm 4, S44-S50 Suppl. S (2007). [CrossRef] [PubMed]
  2. P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999). [CrossRef] [PubMed]
  3. S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994). [CrossRef] [PubMed]
  4. S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993). [PubMed]
  5. B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999). [CrossRef] [PubMed]
  6. H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002). [CrossRef] [PubMed]
  7. A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007). [CrossRef] [PubMed]
  8. L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999). [CrossRef] [PubMed]
  9. M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996). [CrossRef] [PubMed]
  10. F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989). [CrossRef] [PubMed]
  11. K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006). [CrossRef]
  12. G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990). [CrossRef] [PubMed]
  13. R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991). [CrossRef] [PubMed]
  14. S. Bosman, "Heat-induced structural alterations in myocardium in relation to changing optical-properties," Appl. Opt. 32, 461 (1993). [CrossRef] [PubMed]
  15. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, and M. J. C. Vangemert, "Changes in the optical-properties (at 632.8 nm) of slowly heated myocardium," Appl. Opt. 32, 367 (1993). [CrossRef] [PubMed]
  16. R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996). [CrossRef] [PubMed]
  17. J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003). [CrossRef] [PubMed]
  18. J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996). [CrossRef] [PubMed]
  19. B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007). [CrossRef] [PubMed]
  20. B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008). [CrossRef]
  21. J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001). [CrossRef]
  22. T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004). [PubMed]
  23. P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006). [CrossRef] [PubMed]
  24. M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005). [CrossRef] [PubMed]
  25. S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006). [CrossRef] [PubMed]
  26. R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003). [CrossRef] [PubMed]
  27. A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited