OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1115–1124

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode for high color rendering index

Ilkem Ozge Huyal, Tuncay Ozel, Unsal Koldemir, Sedat Nizamoglu, Donus Tuncel, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 1115-1124 (2008)
http://dx.doi.org/10.1364/OE.16.001115


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop and demonstrate high-quality white light generation that relies on the use of a single-type simple conjugated polymer of polyfluorene functionalized with azide groups (PFA) integrated on a near-UV LED platform. The high-quality white emission from the polyfluorene is achieved by using the azide functionalization to facilitate cross-linking intentionally when cast into solid-state form. Hybridized on n-UV InGaN/GaN LED at 378 nm, the PFA emitters collectively generate a very broad down-converting photoluminescence at longer wavelengths across the entirety of the visible spectrum, yielding high color rendering indices up to 91.

© 2008 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optoelectronics

History
Original Manuscript: November 6, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: January 12, 2008
Published: January 15, 2008

Citation
Ilkem O. Huyal, Tuncay Ozel, Unsal Koldemir, Sedat Nizamoglu, Donus Tuncel, and Hilmi Volkan Demir, "White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode for high color rendering index," Opt. Express 16, 1115-1124 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-1115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Schubert and G. C. Frye, Light-Emitting Diodes (Cambridge University Press, 2006). [CrossRef]
  2. G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, "Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films," Appl. Phys. Lett. 87, 103505 (2005). [CrossRef]
  3. S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007). [CrossRef]
  4. S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A: Pure Appl. Opt. 9, S419-S424 (2007). [CrossRef]
  5. S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007). [CrossRef]
  6. B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, "Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer," Adv. Mater 16, 624-628 (2004). [CrossRef]
  7. T. A. Skotheim and R. L. Elsenbaumer, Handbook of Conducting Polymers (Marcel Dekker, 1998).
  8. F. Hide, P. Kozodoy, S. P. DenBaars and A. Heeger, "White light from InGaN/conjugated polymer hybrid light-emitting diodes," Appl. Phys. Lett. 70, 2664-2666 (1997). [CrossRef]
  9. H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007). [CrossRef]
  10. M. Mazzeo, V. Vitale, F. D. Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani, and G. Gigli, "Bright white organic light-emitting devices from a single active molecular material," Adv. Mater. 17, 34-39 (2005). [CrossRef]
  11. J. Luo, X. Li, Q. Hou, J. Peng, W. Yang, and Y. Cao, "High-efficiency white-light emission from a single copolymer: Fluorescent blue, green, and red chromophores on a conjugated polymer backbone," Adv. Mater. 19, 1113-1117 (2007). [CrossRef]
  12. J. Liu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, "The first single polymer with simultaneous blue, green, and red emission for white electroluminescence," Adv. Mater. 17, 2974-2978 (2005). [CrossRef]
  13. J. Liu, Z. Xie, Y. Cheng, Y. Geng, L. Wang, X. Jing, and F. Wang, "Molecular design on highly efficient white electroluminescence from a single-polymer system with simultaneous blue, green, and red emission," Adv. Mater. 19, 531-535 (2007). [CrossRef]
  14. J. Liu, S. Shao, L. Chen, Z. Xie, Y. Cheng, Y. Geng, L. Wang, X. Jing, and F. Wang, "White electroluminescence from a single polymer system: Improved performance by means of enhanced efficiency and red-shifted luminescence of the blue-light-emitting species," Adv. Mater. 19, 1859-1863 (2007). [CrossRef]
  15. G. Tu, C. Mei, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, "Highly efficient pure-white-light-emitting diodes from a single polymer: Polyfluorene with naphthalimide moieties," Adv. Funct. Mater. 16, 101-106 (2006). [CrossRef]
  16. J. Jiang, y. Xu, W. Yang, R. Guan, Z. Liu, H. Zhen, and Y. Cao, "High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission," Adv. Mater. 18, 1769-1773 (2006). [CrossRef]
  17. J. Y. Tsao, "Solid-state lighting," IEEE Circuits Devices Mag. 28-37 (2004). [CrossRef]
  18. A. Kraft, C. Grimsdale, and A. B. Holmes, "Electroluminescent conjugated polymers—Seeing polymers in a new light, "Angew. Chem. 37, 402-428 (1998). [CrossRef]
  19. L. Romaner, A. Pogantsch, P. S. De Freitas, U. Scherf, M. Gaal, E. Zojer, and E. J. W. List, "The origin of green emission in polyfluorene-based conjugated polymers: On-chain defect fluorescence," Adv. Funct. Mater. 13, 597-601 (2003). [CrossRef]
  20. X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, and S. S. Xiao, "Stabilized blue emission from polyfluorene-based light-emitting diodes: Elimination of fluorenone defects," Adv. Funct. Mater. 13, 325-330 (2003). [CrossRef]
  21. E. J. W. List, R. Guenter, P. S. De Freitas, and U. Scherf, "The effect of keto defect sites on the emission properties of polyfluorene-type materials," Adv. Mater. 14, 374-378 (2002). [CrossRef]
  22. W. Zhao, T. Cao, and J. M. White, "On the origin of green emission in polyfluorene polymers: The roles of thermal oxidation degradation and crosslinking," Adv. Funct. Mater. 14, 783-790 (2004). [CrossRef]
  23. K. A. Murray, A. B. Holmes, S. C. Moratti, and G. Rumbles, "Conformational changes in regioregular polythiopenes due to thermal crosslinking," J. Mater. Chem. 9, 2109-2115 (1999). [CrossRef]
  24. M. Leclerc, "Polyfluorenes: Twenty years of progress," J. Polym. Sci. Part A: Polym. Chem. 39, 2867-2873 (2001). [CrossRef]
  25. R. Grisoria, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, "Inside into the role of oxidation in the thermally induced green band in fluorene-based systems," Adv. Funct. Mater. 17, 538-548 (2007). [CrossRef]
  26. Pierce, "Light sources and conditions of aryl azide crosslinking and labeling reagents," http://www.piercenet.com/files/TR0011dh5-Photoactivate-aryl-azides.pdf.
  27. J. March, Advanced Organic Chemistry, (Wiley Interscience, 1992).
  28. X.-H. Zhou, J.-C. Yan, and J. Pei, "Exploiting an Imidazole-Functionalized Polyfluorene Derivative as a Chemosensory Material," Macromolecules 37, 7078 (2004). [CrossRef]
  29. PFB, bromide functionalized polyfluorene, poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis-(6-bromohexyl)fluorene)] Yield: 1.1 g, 64%. IR (KBr, cm-1): 3065 (CH-), 2935 (CH-), 2859 (CH-), 1613 (C= C-), 1571 (C=C-), 727 (C-Br). 1H-NMR (400 MHz, CDCl3): δH 7.85 (m, 12H), 3.32 (t, 4H, J=6 Hz), 2.16 (m, 4H), 1.71 (m, 4H), 1.22 (m, 24H), 0.84 (m, 14H). Gel-permeation chromatography (GPC): Mn= 3.87 x 103, Mw= 2.04 x 104 (Polystyrene as standard). Fluorescence quantum yield (FQY): 0.88 (Quinine sulfate as the standard).
  30. PFA, azide functionalized polyfluorene, poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis-(6-azidohexyl)fluorene)] Yield: 205 mg, 75%. IR (KBr, cm-1): 3065 (CH-), 2935 (CH-), 2859 (CH-), 2100 (-N3), 1613 (C=C-), 1571 (C=C-). 1H-NMR (400 MHZ, CDCl3) δH 7.78 (m, 12H), 3.17 (m, 4H), 1.95 (m, 4H), 1.7 (m, 4H), 1.20 (m, 8H), 0.65 (m, 4H, f). Gel-permeation chromatography (GPC): Mn= 3.61 x 103, Mw= 2.04 x 104 (Polystyrene as standard). Fluorescence quantum yield (FQY): 0.86 (Quinine sulfate as the standard).
  31. E. Sari, S. Nizamoglu, T. Ozel, and H. V. Demir, "Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect with blue shift," Appl. Phys. Lett. 90, 011101 (2007). [CrossRef]
  32. T. Ozel, E. Sari, S. Nizamoglu, and H. V. Demir, "Violet to deep-ultraviolet InGaN/GaN and GaN/AlGaN quantum structures for UV electroabsorption modulators," J. Appl. Phys. 102, 113101 (2007). [CrossRef]
  33. H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, and J.-F. Zheng, "Multifunctional integrated photonic switches," IEEE J. Sel. Top. Quantum Electron. 11, 86 (2005). [CrossRef]
  34. V. A. Sabnis, H. V. Demir, O. Findaner, J. S. Harris, D. A. B. Miller, J. F. Zheng, N. Li, T. C. Wu, H. T. Chen, and Y. M. Houng, "Optically-controlled electroabsorption modulators for unconstrained wavelength conversion," Appl. Phys. Lett. 84, 469-471 (2004). [CrossRef]
  35. H. V. Demir, V. A. Sabnis, J. F. Zheng, O. Fidaner, J. S. Harris, and D. A. B. Miller, "Scalable wavelength-converting crossbar switches," IEEE Photon. Technol. Lett. 16, 2305-2307 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited