OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1125–1131

Lasing dynamics in single ZnO nanorods

Johannes Fallert, Felix Stelzl, Huijuan Zhou, Anton Reiser, Klaus Thonke, Rolf Sauer, Claus Klingshirn, and Heinz Kalt  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 1125-1131 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the lasing dynamics of individual ZnO nanorods by time-resolved μ-photoluminescence. The distinct laser modes show gain competition and pronounced shifts as a function of excitation density. This behavior can be understood in terms of many-particle effects within an inverted electron-hole plasma and of the calculated mode spectra of the particular nanorod, whose geometry is known from electron microscope investigations.

© 2008 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 26, 2007
Revised Manuscript: January 11, 2008
Manuscript Accepted: January 14, 2008
Published: January 15, 2008

Johannes Fallert, Felix Stelzl, Huijuan Zhou, Anton Reiser, Klaus Thonke, Rolf Sauer, Claus Klingshirn, and Heinz Kalt, "Lasing dynamics in single ZnO nanorods," Opt. Express 16, 1125-1131 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005). [CrossRef]
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001). [CrossRef] [PubMed]
  3. H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006). [CrossRef] [PubMed]
  4. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007). [CrossRef]
  5. R. Hauschild, and H. Kalt, "Guided modes in ZnO nanorods," Appl. Phys. Lett. 89, 123107 (2006) [CrossRef]
  6. J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005). [CrossRef]
  7. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002). [CrossRef]
  8. B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006). [CrossRef]
  9. G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007). [CrossRef]
  10. S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007). [CrossRef]
  11. R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006). [CrossRef]
  12. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006). [CrossRef] [PubMed]
  13. L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006). [CrossRef]
  14. C. Klingshirn, and H. Haug, "Optical properties of highly excited direct gap semiconductors," Physics Rep. 70, 315-398 (1981). [CrossRef]
  15. S. W. Koch, and M. Kira, Optics of Semiconductors and their Nanostructures, (Springer, Berlin, 2004).
  16. H. Yoshikawa, and S. Adachi, Jpn. J. Appl. Phys. "Optical constants of ZnO," 36, 6237-6243 (1997). [CrossRef]
  17. K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980). [CrossRef]
  18. P. Vashishta, and R. K. Kalia, "Universal behavior of exchange-correlation energy in electron-hole liquid," Phys. Rev. B 25, 6492-6495 (1982). [CrossRef]
  19. C. Klingshirn, Semiconductor Optics, 3rd ed., (Springer, Berlin, 2007).
  20. C. Klingshirn, "ZnO: From basics towards applications," Phys. Status Solidi B 244, 3027-3073 (2007). [CrossRef]
  21. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited