OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1165–1173

Ultrafast carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure

R. P. Prasankumar, R. S. Attaluri, R. D. Averitt, J. Urayama, N. Weisse-Bernstein, P. Rotella, A. D. Stintz, S. Krishna, and A. J. Taylor  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 1165-1173 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrafast differential transmission spectroscopy is used to explore temperature-dependent carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure. Electron-hole pairs are optically injected into the three dimensional GaAs barriers, after which we monitor carrier relaxation into the two dimensional InGaAs quantum wells and the zero dimensional InAs quantum dots by tuning the probe photon energy. We find that carrier capture and relaxation are dominated by Auger carrier-carrier scattering at low temperatures, with thermal emission playing an increasing role with temperature. Our experiments provide essential insight into carrier relaxation across multiple spatial dimensions.

© 2008 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.5570) Detectors : Quantum detectors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Ultrafast Optics

Original Manuscript: November 30, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: January 12, 2008
Published: January 15, 2008

R. P. Prasankumar, R. S. Attaluri, R. D. Averitt, J. Urayama, N. Weisse-Bernstein, P. Rotella, A. D. Stintz, S. Krishna, and A. J. Taylor, "Ultrafast carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure," Opt. Express 16, 1165-1173 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, "Quantum dot opto-electronic devices," Annu. Rev. Mater. Res. 34, 1 (2004). [CrossRef]
  2. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706 (1993). [CrossRef]
  3. S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, "High-responsivity, normal-incidence long-wave infrared (λ~7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector," Appl. Phys. Lett. 81, 1369 (2002). [CrossRef]
  4. G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures," IEEE J. Quantum Elect. 36, 1272 (2000). [CrossRef]
  5. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, New York, 1999).
  6. V. I. Klimov, "Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals," Annu. Rev. Phys. Chem. 58, 635 (2007). [CrossRef]
  7. A. S. Lenihan, M. V. G. Dutt, D. G. Steel, P. Bhattacharya, and S. Ghosh, "Biexcitonic resonance in the nonlinear optical response of an InAs quantum dot ensemble," Phys. Rev. B 69, 045306 (2004). [CrossRef]
  8. J. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, "Observation of phonon bottleneck in quantum dot electronic relaxation," Phys. Rev. Lett. 86, 4930 (2001). [CrossRef] [PubMed]
  9. J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, "Differential transmission measurement of phonon bottleneck in self-assembled quantum dot intersubband relaxation," Physica B 316-317, 74 (2002). [CrossRef]
  10. S. Krishna, "Quantum dots-in-a-well infrared photodetectors," J. Phys. D: Appl. Phys. 38, 2142 (2005). [CrossRef]
  11. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, "Optical characteristics of 1.24-um InAs quantum-dot laser diodes," IEEE Photon. Technol. Lett. 11, 991 (1999). [CrossRef]
  12. A. Fiore, P. Borri, W. Langbein, J. M. Hvam, U. Oesterle, R. Houdre, R. P. Stanley, and M. Ilegems, "Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 um," Appl. Phys. Lett. 76, 3430 (2000). [CrossRef]
  13. F. Pulizzi, A. J. Kent, A. Patane, L. Eaves, and M. Henini, "Time-resolved photoluminescence of InAs quantum dots in a GaAs quantum well," Appl. Phys. Lett. 84, 3046 (2004). [CrossRef]
  14. X. Mu, Y. J. Ding, B. S. Ooi, and M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006). [CrossRef]
  15. A. I. Tartakovskii, R. S. Kolodka, H. Y. Liu, M. A. Migliorato, M. Hopkinson, M. N. Makhonin, D. J. Mowbray, and M. S. Skolnick, "Exciton fine structure splitting in dot-in-a-well structures," Appl. Phys. Lett. 88, 131115 (2006). [CrossRef]
  16. G. Raino, G. Visimberga, A. Salhi, M. De Vittorio, A. Passaseo, R. Cingolani, and M. De Giorgi, "Simultaneous filling of InAs quantum dot states from the GaAs barrier under nonresonant excitation," Appl. Phys. Lett. 90, 111907 (2007). [CrossRef]
  17. T. Piwonski, I. O'Driscoll, J. Houlihan, G. Huyet, R. J. Manning, and A. V. Uskov, "Carrier capture dynamics of InAs/GaAs quantum dots," Appl. Phys. Lett. 90, 122108 (2007). [CrossRef]
  18. I. O'Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. J. Manning, "Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers," Appl. Phys. Lett. 91, 071111 (2007). [CrossRef]
  19. S. Krishna, S. Raghavan, G. von Winckel, P. Rotella, A. Stintz, C. P. Morath, D. Le, and S. W. Kennerly, "Two color InAs/InGaAs dots-in-a-well detector with background-limited performance at 91 K," Appl. Phys. Lett. 82, 2574 (2003). [CrossRef]
  20. T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, "Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy," Phys. Rev. B 57, R9423 (1998). [CrossRef]
  21. T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. Bhattacharya, "Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots," J. Phys. D: Appl. Phys. 38, 2077 (2005). [CrossRef]
  22. H. Jiang and J. Singh, "Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study," Phys. Rev. B 56, 4696 (1997). [CrossRef]
  23. A. L. Efros, V. A. Kharchenko, and M. Rosen, "Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes," Solid State Commun. 93, 281 (1995). [CrossRef]
  24. V. I. Klimov, "Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals," J. Phys. Chem. B 104, 6112 (2000). [CrossRef]
  25. F. Quochi, M. Dinu, L. N. Pfeiffer, K. W. West, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Coulomb and carrier-activation dynamics of resonantly excited InAs/GaAs quantum dots in two-color pump-probe experiments," Phys. Rev. B 67, 235323 (2003). [CrossRef]
  26. V. I. Klimov and D. W. McBranch, "Auger-process-induced charge separation in semiconductor nanocrystals," Phys. Rev. B 55, 13173 (1997). [CrossRef]
  27. Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, "Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states," Phys. Rev. Lett. 82, 4114 (1999). [CrossRef]
  28. U. Bockelmann and T. Egeler, "Electron relaxation in quantum dots by means of Auger processes," Phys. Rev. B 46, 15574 (1992). [CrossRef]
  29. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, "Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532 (1996). [CrossRef]
  30. R. Ferreira and G. Bastard, "Unbound states in quantum heterostructures," Nanoscale Res. Lett. 1, 120 (2006). [CrossRef]
  31. A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, "Auger carrier capture kinetics in self-assembled quantum dot structures," Appl. Phys. Lett. 72, 58 (1998). [CrossRef]
  32. E. W. Bogaart, J. E. M. Haverkort, T. Mano, T. van Lippen, R. Notzel, and J. H. Wolter, "Role of the continuum background for carrier relaxation in InAs quantum dots," Phys. Rev. B 72, 195301 (2005). [CrossRef]
  33. A. Vasanelli, R. Ferreira, and G. Bastard, "Continuous absorption background and decoherence in quantum dots," Phys. Rev. Lett. 89, 216804 (2002). [CrossRef] [PubMed]
  34. R. Ferreira and G. Bastard, "Phonon-assisted capture and intradot Auger relaxation in quantum dots," Appl. Phys. Lett. 74, 2818 (1999). [CrossRef]
  35. H. Jiang and J. Singh, "Radiative and non-radiative inter-subband transition in self-assembled quantum dots," Physica E 2, 720 (1998). [CrossRef]
  36. J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, "Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots," Appl. Phys. Lett. 80, 2162 (2002). [CrossRef]
  37. J. Siegert, S. Marcinkevicius, and Q. X. Zhao, "Carrier dynamics in modulation-doped InAs/GaAs quantum dots," Phys. Rev. B 72, 085316 (2005). [CrossRef]
  38. Z.-K. Wu, H. Choi, X. Su, S. Chakrabarti, P. Bhattacharya, and T. B. Norris, "Ultrafast electronic dynamics in unipolar n-doped InGaAs-GaAs self-assembled quantum dots," IEEE J. Quantum Elect. 43, 486 (2007). [CrossRef]
  39. H. Lim, S. Tsao, W. Zhang, and M. Razeghi, "High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature," Appl. Phys. Lett. 90, 131112 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited