OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1269–1279

Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit

Jaewoong Yoon, Seok Ho Song, and Jin-Ha Kim  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 1269-1279 (2008)
http://dx.doi.org/10.1364/OE.16.001269


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a unique method determining an upper limit of extraction efficiency of the surface plasmon-polaritons (SPPs), ESP , which are highly confined on a corrugated metal surface. The method is based on measurement of the spectral bandwidth of a grating-induced absorption spectrum as a function of metal dielectric constant. After finding the fact that ESP exhibits an extremely linear relationship with the collision frequency Γ of metal over a SPP band below the surface plasmon frequency, an upper limit of ESP can be determined by an asymptotic estimation as Γ→0 for total decay rates of the confined SPPs. Our method based on the bandwidth measurement is inherently free from the ambiguity and underestimation difficulties pertaining to the previous prism-coupling approaches for ESP estimation. It will also be quite applicable for evaluating SPP-mediated light-emitting diodes (LEDs) of which total external efficiency is dominantly restricted by the upper limit of ESP . Especially for the case when SPP excitation probability approaches unity, the proposed method would excellently figure out the maximum realizable external efficiency of SPP-mediated LEDs.

© 2008 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 29, 2007
Revised Manuscript: December 27, 2007
Manuscript Accepted: January 8, 2008
Published: January 16, 2008

Citation
Jaewoong Yoon, Seok H. Song, and Jin-Ha Kim, "Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit," Opt. Express 16, 1269-1279 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-1269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. R. A. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997). [CrossRef]
  4. W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999). [CrossRef]
  5. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999). [CrossRef]
  6. J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000). [CrossRef]
  7. W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Technol. 17, 2170-2182 (1999). [CrossRef]
  8. P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002). [CrossRef]
  9. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002). [CrossRef]
  10. K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004). [CrossRef]
  11. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005). [CrossRef]
  12. G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  13. J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007). [CrossRef]
  14. J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982). [CrossRef]
  15. P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001). [CrossRef]
  16. P. T. Worthing and W. L. Barnes, "Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence," J. Mod. Opt. 49, 1453-1462 (2002). [CrossRef]
  17. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003). [CrossRef] [PubMed]
  18. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006). [CrossRef]
  19. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).
  20. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968). [CrossRef]
  21. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  22. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).
  23. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  24. D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978). [CrossRef]
  25. A. Sharon, G. Glasberg, D. Rosenblatt, and A. A. Friesem, "Metal-based resonant grating waveguide structures," J. Opt. Soc. Am. A 14, 588-595 (1997). [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  27. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd Ed., Translated by J. B. Sykes, J. S. Bell, and M. J. Kearsley, (Elsevier Butterworth-Heinmann, Oxford, 1984). [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).
  29. J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385-420 (1904). [CrossRef]
  30. J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976). [CrossRef]
  31. M.D. Tillin and J. R. Sambles, "Phonon assisted absorption in thin Ag films using surface plasmon-polaritons," J. Phys.: Condens. Matter 2, 7055-7059 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited