OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1331–1342

Multi-wavelength spatial light shaping using generalized phase contrast

Darwin Palima and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 1331-1342 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generalized phase contrast method (GPC) is a versatile tool for efficiently rerouting photon energy into desired spatial distributions. We demonstrate that GPC-based patterned projection shows robustness to shift in wavelength and can maintain the projection length scale and high efficiency over a range [0.75λ0;1.5λ0] with λ0 as the characteristic design wavelength. The GPC has the capacity to combine multiple wavelengths along the same optical path and to efficiently redirect them into desired distributions such as for array illumination, beam shaping, or grayscale image projection. This opens the possibility for creatively incorporating various multi-wavelength approaches into patterned illumination that can enable new broad-band optical applications.

© 2008 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Fourier optics and signal processing

Original Manuscript: December 3, 2007
Revised Manuscript: January 14, 2008
Manuscript Accepted: January 15, 2008
Published: January 17, 2008

Darwin Palima and Jesper Glückstad, "Multi-wavelength spatial light shaping using generalized phase contrast," Opt. Express 16, 1331-1342 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Chen, G. M. Brown, and M. Song, "Overview of three-dimensional shape measurement using optical methods," Opt. Eng. 39, 10-22 (2000). [CrossRef]
  2. M. A. A. Neil, R. Juskaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  3. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005). [CrossRef] [PubMed]
  4. J. Glückstad, "Adaptive array illumination and structured light generated by spatial zero-order self-phase modulation in a Kerr medium," Opt. Commun. 120, 194-203 (1995). [CrossRef]
  5. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett.  29, 2270-2272 (2004). [CrossRef] [PubMed]
  6. S. Singh-Gasson, R. D. Green, Y. J. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, "Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array," Nat. Biotechnol. 17, 974-978 (1999). [CrossRef] [PubMed]
  7. S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, "Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels," Appl. Phys. Lett. 91, 041106 (2007). [CrossRef]
  8. S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003). [CrossRef]
  9. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002). [CrossRef] [PubMed]
  10. Y. Y. Cheng and J. C. Wyant, "Multiple-wavelength phase-shifting interferometry," Appl. Opt. 24, 804-807 (1985). [CrossRef] [PubMed]
  11. E. L. Heffer and S. Fantini, "Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor," Appl. Opt. 41, 3827-3839 (2002). [CrossRef] [PubMed]
  12. Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, "Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm," Appl. Phys. Lett. 81, 975-977 (2002). [CrossRef]
  13. B. R. Frieden, "Lossless conversion of a plane laser wave to a plane wave of uniform irradiance," Appl. Opt. 4, 1400-1403 (1965). [CrossRef]
  14. X. M. Deng, X. C. Liang, Z. Z. Chen, W. Y. Yu, and R. Y. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986). [CrossRef] [PubMed]
  15. A. W. Lohmann, and J. A. Thomas, "Making an array illuminator based on the Talbot effect," Appl. Opt. 29, 4337-4340 (1990). [CrossRef] [PubMed]
  16. F. Wyrowski, "Diffractive optical elements- iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. A 7, 961-969 (1990). [CrossRef]
  17. S. H. Lee, and D. G. Grier, "Robustness of holographic optical traps against phase scaling errors," Opt. Express 13, 7458-7465 (2005). [CrossRef] [PubMed]
  18. J. Glückstad, "Phase contrast image synthesis," Opt. Commun. 130, 225-230 (1996). [CrossRef]
  19. J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001). [CrossRef]
  20. J. Glückstad, L. Lading, H. Toyoda, and T. Hara, "Lossless light projection," Opt. Lett. 22, 1373-1375 (1997). [CrossRef]
  21. V. R. Daria, P. J. Rodrigo, and J. Gluckstad, "Dynamic array of dark optical traps," Appl. Phys. Lett. 84, 323-325 (2004). [CrossRef]
  22. P. J. Rodrigo, V. R. Daria, and J. Gluckstad, "Dynamically reconfigurable optical lattices," Opt. Express 13, 1384-1394 (2005). [CrossRef] [PubMed]
  23. C. A. Alonzo, P. J. Rodrigo, and J. Gluckstad, "Photon-efficient grey-level image projection by the generalized phase contrast method," New J. Phys. 9, 132 (2007). [CrossRef]
  24. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, "Generalized phase contrast matched to Gaussian illumination," Opt. Express 15, 11971-11977 (2007). [CrossRef] [PubMed]
  25. J. Glückstad, D. Palima, P. J. Rodrigo, and C. A. Alonzo, "Laser projection using generalized phase contrast," Opt. Lett. 32, 3281-3283 (2007). [CrossRef] [PubMed]
  26. D. Palima and V. R. Daria, "Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms," Appl. Opt. 45, 6689-6693 (2006) [CrossRef] [PubMed]
  27. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004). [CrossRef] [PubMed]
  28. N. Kitamura and F. Kitagawa, "Optical trapping - chemical analysis of single microparticles in solution," J. Photochem. Photobiol. C 4, 227-247 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited