OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 494–501

Near-field amplitude and phase recovery using phase-shifting interferometry

B. Deutsch, R. Hillenbrand, and L. Novotny  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 494-501 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scattering-type scanning near-field optical microscopy has allowed for investigation of light-matter interaction of a large variety of samples with excellent spatial resolution. Light incident on a metallic probe experiences an amplitude and phase change on scattering, which is dependent on optical sample properties. We implement phase-shifting interferometry to extract amplitude and phase information from an interferometric near-field scattering system, and compare recorded optical images with theoretical predictions. The results demonstrate our ability to measure, with nanoscale resolution, amplitude and phase distributions of optical fields on sample surfaces. The here-introduced phase-shifting method is considerably simpler than heterodyne methods and less sensitive to errors than the two-step homodyne method.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.5810) Microscopy : Scanning microscopy
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: November 6, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: December 20, 2007
Published: January 7, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

B. Deutsch, R. Hillenbrand, and L. Novotny, "Near-field amplitude and phase recovery using phase-shifting interferometry," Opt. Express 16, 494-501 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007). [CrossRef] [PubMed]
  2. R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy," Appl. Phys. Lett. 80, 25 (2002). [CrossRef]
  3. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef] [PubMed]
  4. J. E. Hall, G. P. Wiederrecht, S. K. Gray, S.-H. Chang, S. Jeon, J. A. Rogers, R. Bachelot, and P. Royer, "Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells," Opt. Express 15, 4098-4105 (2007). [CrossRef]
  5. N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett. 89, 101124-1 (2006). [CrossRef]
  6. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004). [CrossRef]
  7. L. Novotny, B. Hecht, and D. Pohl, "Implications of high resolution to near-field optical microscopy," Ultramicroscopy 71, 341-344 (1998). [CrossRef]
  8. L. Novotny and S. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006). [CrossRef] [PubMed]
  9. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Exp. 13, 5553-5564 (2005). [CrossRef]
  10. R. Hillenbrand, F. Keilmann, P. Hanarp, D. Sutherland, and J. Aizpura, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). [CrossRef]
  11. G. Wiederrecht, "Near-field optical imaging of noble metal nanoparticles," Eur. Phys. J. Appl. Phys. 28, 3-18 (2004). [CrossRef]
  12. G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999). [CrossRef]
  13. M. Labardi, S. Patanè, and M. Allegrini, "Artifact-free near-field optical imaging by apertureless microscopy," Appl. Phys. Lett. 77, 621-623 (2000). [CrossRef]
  14. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000). [CrossRef]
  15. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003). [CrossRef] [PubMed]
  16. R. Hillenbrand, B. Knoll, and F. Keilmann, "Pure optical contrast in scattering-type scanning near-field microscopy," J. Microsc. 202, 77-83 (2001). [CrossRef] [PubMed]
  17. J. Bruning, D. Herriott, J. Gallagher, D. Rosenfeld, A. White, and D. Brangaccio, "Digital wavefront measuring interferometer for testing optical surfaces and lenses," Appl. Opt. 13, 2693-2703 (1974). [CrossRef] [PubMed]
  18. J. Greivenkamp and J. Bruning, "Phase-shifting interferometers," in Optical Shop Testing, D. Malacara, ed., pp. 501-598 (Wiley, NY, 1991).
  19. Y. Surrel, "Phase stepping: a new self-calibrating algorithm," Appl. Opt. 32, 3598-3600 (1993). [CrossRef] [PubMed]
  20. P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, "Computational Lens for the Near Field," Phys. Rev. Lett. 92, 163903 (2004). [CrossRef] [PubMed]
  21. J. Sun, J. Schotland, and P. S. Carney, "Strong probe effects in near-field optics," J. Appl. Phys. (2007 (in press)).
  22. L. Novotny and B. Hecht, Principles of Nano Optics (Cambridge University Press, New York, 2006).
  23. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2000). [CrossRef]
  24. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-field second-harmonic generation induced by local field enhancement," Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  25. D. Philliion, "General methods for generating phase-shifting interferometry algorithms," Appl. Opt. 36, 8098-8115 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited