OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 507–523

High numerical aperture vectorial imaging in coherent optical microscopes

P. Török, P.R.T. Munro, and Em.E. Kriezis  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 507-523 (2008)
http://dx.doi.org/10.1364/OE.16.000507


View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging systems are typically partitioned into three components: focusing of incident light, scattering of incident light by an object and imaging of scattered light. We present a model of high Numerical Aperture (NA) imaging systems which differs from prior models as it treats each of the three components of the imaging system rigorously. It is well known that when high NA lenses are used the imaging system must be treated with vectorial analysis. This in turn requires that the scattering of light by the object be calculated rigorously according to Maxwell’s equations. Maxwell’s equations are solvable analytically for only a small class of scattering objects necessitating the use of rigorous numerical methods for the general case. Finally, rigorous vectorial diffraction theory and focusing theory are combined to calculate the image of the scattered light. We demonstrate the usefulness of the model through examples.

© 2008 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(180.0180) Microscopy : Microscopy
(260.2110) Physical optics : Electromagnetic optics
(110.1758) Imaging systems : Computational imaging

ToC Category:
Microscopy

History
Original Manuscript: October 15, 2007
Revised Manuscript: December 30, 2007
Manuscript Accepted: January 4, 2008
Published: January 7, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
P. Török, P. R. T. Munro, and Em. E. Kriezis, "High numerical aperture vectorial imaging in coherent optical microscopes," Opt. Express 16, 507-523 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  2. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988).
  3. V. S. Ignatowsky, "Diffraction by a lens of arbitrary aperture," Trans. Opt. Inst. Petr. 1, 1-36 (1919).
  4. R. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley and Los Angeles, 1966).
  5. C. J. R. Sheppard and T. Wilson, "The image of a single point in microscopes of large numerical aperture," Proc. R. Soc. London, Ser. A 379, 145-58 (1982). [CrossRef]
  6. P. Török, P. Higdon, R. Juskaitis, and T. Wilson, "Optimising the image contrast of conventional and confocal optical microscopes imaging finite sized spherical gold scatterers," Opt. Commun. 155, 335-341 (1998). [CrossRef]
  7. A.S. van de Nes, P. Török, "Rigorous analysis of spheres in Gauss-Laguerre beams," Opt. Express 15, 13360-13374 (2007) [CrossRef] [PubMed]
  8. J. Judkins and R. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A. 12(9), 1974-1983 (1995). [CrossRef]
  9. J. Liu, B. Xu, and T. Chong, "Three-Dimensional Finite-Difference Time-Domain Analysis of Optical Disk Storage System," Jpn. J. App. Phys. 39, 687-692 (2000). [CrossRef]
  10. L. Liu, Z. Shi, and S. He, "Analysis of the polarization-dependent diffraction from a metallic grating by use of a three-dimensional combined vectorial method," J. Opt. Soc. Am. A 21, 1545-1552 (2004). [CrossRef]
  11. J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol and Boston, 1986).
  12. P. Török, "An imaging theory for advanced, high numerical aperture optical microscopes," (2004). DSc thesis.
  13. P. Török, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  14. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Opt. 36(11), 2305-2312 (1997). [CrossRef] [PubMed]
  15. J. Jin, The finite element method of electromagnetics (Wiley Interscience, 2002).
  16. H. Pocklington, "Electrical oscillations in wires," Proc. Cam. Phil. Soc. 9, 324-332 (1897).
  17. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  18. O. Martin, A. Dereux, and C. Girard, "Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape," J. Opt. Soc. Am. A 11, 1073-1080 (1994). [CrossRef]
  19. R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222-227 (1990). [CrossRef]
  20. P. Johnson and R. Christy, "Optical constants for noble metals," Phys. Rev. Lett. 6, 4370-4379 (1972).
  21. K. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  22. A. Taflove and S. Hagness, Computational electrodynamics, second edition (Artech House, 2000).
  23. A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure App. Math. 23, 707-725 (1980). [CrossRef]
  24. B. Engquist, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comput. 31, 629-651 (1977). [CrossRef]
  25. G. Mur, "Absorbing boundary conditions for finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromag. Compat. 23, 377-382 (1981). [CrossRef]
  26. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  27. A. Poggio and E. Miller, Computer techniques for electromagnetics, chap. Integral equation solutions of threedimensional scattering problems, pp. 159-264 (Pergamon Press, 1973).
  28. P. Török and C. Sheppard, High numerical aperture focusing and imaging (Adam Hilger).
  29. P. Török, P. R. T. Munro, and E. Kriezis, "A rigorous near to farfield transformation for vectorial diffraction calculations and its numerical implementation," J. Opt. Soc. Am. A 23, 713-722 (2006). [CrossRef]
  30. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic Press, Boston, 1985).
  31. P. Török, "Propagation of electromagnetic dipole waves through dielectric interfaces," Opt. Lett. 25, 1463-1465 (2000). [CrossRef]
  32. B. Karczewski and E. Wolf, "Comparison of three theories of electromagnetic diffraction at an aperture Part I: coherence matrices, Part II The far field," J. Opt. Soc. Am. 56, 1207-19 (1966). [CrossRef]
  33. P. R. T. Munro and P. Török, "Calculation of the image of an arbitrary vectorial electromagnetic field," Opt. Express 15, 9293-9307 (2007). [CrossRef] [PubMed]
  34. L. G. Schulz and F. R. Tangherlini, "Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n," J. Opt. Soc. Am. 44, 362-368 (1954). [CrossRef]
  35. P. Török, P. Higdon, and T. Wilson, "Theory for confocal and conventional microscopes imaging small dielectric scatterers," J. Mod. Opt. 45, 1681-1698 (1998). [CrossRef]
  36. P. R. T. Munro and P. Török, "Vectorial, high-numerical-aperture study of phase-contrast microscopes," J. Opt. Soc. Am. A. 21, 1714-1723 (2004). [CrossRef]
  37. P. R. T. Munro and P. Török, "Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope," Opt. Express 13, 6833-6847 (2005). [CrossRef] [PubMed]
  38. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating di_raction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  39. E. Moreno, D. Erni, C. Hafner and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. 19, 101-111 (2002). [CrossRef]
  40. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal and D. van Labeke, "Numerical analysis of a slit-groove diffraction problem," J. Eur. Opt. Soc. 207022 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (360 KB)     
» Media 2: AVI (199 KB)     
» Media 3: AVI (74 KB)     
» Media 4: AVI (225 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited