OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 549–559

Design and simulation of 1310 nm and 1480 nm single-mode photonic crystal fiber Raman lasers

S.K. Varshney, K. Sasaki, K. Saitoh, and M. Koshiba  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 549-559 (2008)
http://dx.doi.org/10.1364/OE.16.000549


View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have numerically investigated the Raman lasing characteristics of a highly nonlinear photonic crystal fiber (HNPCF). HNPCF Raman lasers are designed to deliver outputs at 1.3 µm and 1.48 µm wavelengths through three and six cascades of Raman Stokes cavities when the pumps of 1117 nm and 1064 nm are injected into HNPCF module, respectively. A quantum efficiency of approximately 47% was achieved in a short length of HNPCF for 1.3 µm lasing wavelength. The HNPCF design is modified further to operate in single-mode fashion keeping intact its Raman lasing characteristics. The modified HNPCF design consists of two air-hole rings where the higher-order modes in the central core are suppressed by enhancing their leakage losses drastically, thus ceasing their propagation in the short length of HNPCF. On the other hand, the fundamental mode is well confined to the central core region, unaffecting its lasing performances. Further, the lasing characteristics of HNPCF at 1480 nm are compared with conventional highly nonlinear fiber Raman laser operating at 1480 nm. It is found that one can reduce the fiber length by five times in case of HNPCF with nearly similar conversion efficiency.

© 2008 Optical Society of America

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 24, 2007
Revised Manuscript: December 5, 2007
Manuscript Accepted: December 25, 2007
Published: January 7, 2008

Citation
S. K. Varshney, K. Sasaki, K. Saitoh, and M. Koshiba, "Design and simulation of 1310 nm and 1480 nm single-mode photonic crystal fiber Raman lasers," Opt. Express 16, 549-559 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. AuYeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69, 803-807 (1979). [CrossRef]
  2. M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000). [CrossRef]
  3. I.A. Bufetov and E.M. Dianov, "A simple analytic model of a cw multicascade fiber Raman laser," Quantum Electron. 30, 873-877 (2000). [CrossRef]
  4. M. Krause and H. Renner, "Theory and design of double-cavity Raman fiber lasers," J. Lightwave Technol. 23, 2474-2483 (2005). [CrossRef]
  5. A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005). [CrossRef]
  6. M.N. Islam, Raman Amplification for Telecommunications 2 (Springer, 2003).
  7. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  8. A. Bjarklev, J. Broeng and A.S. Bjarklev, Photonic Crystal Fibres (Kulwer Academic Publishers, 2003). [CrossRef]
  9. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  10. R.K. Sinha and S.K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003). [CrossRef]
  11. M. Fuochi, F. Poli, S. Selleri, A. Cucinotta, and L. Vincetti, "Study of Raman amplification properties in triangular photonic crystal fibers," J. Lightwave Technol. 21, 2247-2254 (2003). [CrossRef]
  12. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 22, 1707-1713 (2004). [CrossRef]
  13. S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005). [CrossRef]
  14. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005). [CrossRef] [PubMed]
  15. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006). [CrossRef] [PubMed]
  16. S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007). [CrossRef]
  17. S.K. Varshney, Y. Tsuchida, K. Sasaki, K. Saitoh, and M. Koshiba, "Measurement of chromatic dispersion and Raman gain efficiency of hole-assisted fiber: Influence of bend," Opt. Express 15, 2974-2980 (2007). [CrossRef] [PubMed]
  18. J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005). [CrossRef]
  19. Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006). [CrossRef]
  20. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  21. A. Monteville, D. Landais, O. Le Goffic, D. Tregoat, N. J. Traynor, T. -N. Nguyen, S. Lobo, T. Chartier, and J. -C. Simon, "Low Loss, Low OH, Highly Non-linear Holey Fiber for Raman Amplification," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMC1.
  22. G.P. Agrawal, Nonlinear fiber optics (Academic press, 2004).
  23. K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M. E. Lines, and H. Smith, "Scaling of the Raman gain coefficient: applications to germanosilicate fibers," J. Lightwave Technol. 21, 1652-1662 (2003). [CrossRef]
  24. www.mathworks.com
  25. T.P White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  26. Sumitomo Elect. Ind., www.sei.co.jp.
  27. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003). [CrossRef] [PubMed]
  28. S.G. Leon-Saval, T.A. Birks, N.Y. Joy, A.K. George, W.J. Wadsworth, G. Kakarantzas, and P.St.J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1634 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited